

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES & TECHNOLOGY

DEPARTMENT OF APPLIED STATISTICS

MODULE: LINEAR MATHEMATICS 1

CODE: ASTA 103

SESSIONAL EXAMINATIONS JUNE 2023

DURATION: 3 HOURS EXAMINER: DR W. GOVERE

INSTRUCTIONS

- 1. Answer All in Section A
- 2. Answer three questions in Section B.
- 3. Start a new question on a fresh page
- 4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator, List of formulae.

SECTION A (Answer ALL Questions from this Section)

A1 Represent the following complex numbers on an Argand diagram:

a)
$$\frac{(3+2i)}{(2-i)}$$
.

b) (3+5i)(2-2i).

c)
$$(0.5-0.3i) - (0.6+1.4i).$$

[4, 3, 3]

A2. Let
$$M = \begin{pmatrix} 1 & 1 & -1 \\ 3 & -2 & 1 \\ 4 & 1 & -2 \end{pmatrix}$$
 be a given matrix

- a) Evaluate |M| and hence find |3M|
- b) Evaluate M^{-1} .
- c) Use the method of inverses to solve the system

$$MX = (1 \ 3 \ 9)^t$$
, where $X = (x \ y \ z)^t$.

A3. Find the general solution of the following differential equations.

i)
$$\frac{dy}{dx} = \frac{1}{1+x^2}$$
ii)
$$\frac{dy}{dx} + 2y = e^{2x}$$

[3, 4]

[3, 3, 4, 7]

A4. Solve the following system of linear equations by Gauss-Jordan elimination

$$2x + y - z = -1$$
$$-2x + y + 2z = 1$$
$$x + y + z = 2$$

[6]

SECTION B (Answer any **THREE** Questions from this Section)

B5 a) If A=
$$\begin{pmatrix} 1 & 4 & -2 \\ 2 & 5 & 1 \\ -1 & 3 & -3 \end{pmatrix}$$

- i) Evaluate |A| and hence find A^{-1} .
- ii) Evaluate $A^2 2A$.
- iii) Use the method of inverses to solve $AX = (2, 5, -1)^T$.
- iv) Prove that det $(A^{-1}) = \frac{1}{\det(A)}$.
- b) Find the value of *a* for which the systems of equations have no solution.

$$3x - 2y + 3z = 4$$
$$-x + y + z = 1$$
$$2x - y + 3z = a - 2$$

[4, 4, 4, 3, 5]

- **B6** a) Express the following complex numbers in polar form:
 - (i) -1 i
 - (ii) -4 i
 - b) Let $z = 10cis \frac{5\pi}{6}$ and $w = 6cis \frac{\pi}{3}$ evaluate:
 - (i) *zw*.
 - (ii) $\frac{z}{w}$.
 - c) Given the following complex numbers $z_1 = 2 2i$, $z_2 = \sqrt{3} + i$ and $z_3 = a + bi$ where $a \in \mathbb{R}$, $b \in \mathbb{R}$
 - (i) If $|z_1z_3| = 16$, find the modulus z_3

- (ii) Given further that $\arg\left(\frac{z_3}{z_2}\right) = \frac{7\pi}{12}$, determine the argument of z_3
- (iii) Find the values of a and b, and hence show that $\frac{z_3}{z_1} = -2$ [2, 3, 2, 3, 4, 3, 3]

B7

- a) Find the particular solution to the differential equation $\frac{dy}{dx} = xy + x$ which satisfies y = 3 when x = 0. Show your work.
- **b**) Show that the equation $\frac{dy}{dx} = \frac{x+3y}{y-3x}$ is a homogeneous first-order equation and hence solve it.
- c) Show that the equation $\cos(x + y)dx + (3y^2 + 2y + \cos(x + y))dy = 0$ is exact and hence solve the equation.

[7, 8, 5]

- **B8** a) Show that if $n \neq 0,1$ then the substitution $w = y^{1-n}$ reduces the Bernoulli equation $y' + p(x)y = q(x)y^n$ to a linear equation. Hence solve the equation $\cos x \frac{dy}{dx} - y \sin x = y^3 \cos^2 x$.
 - b) The population of bacteria grows at a rate proportional to the number of bacteria present at any time. Initially there were 400 bacteria and after 3 hours 2000 bacteria were present. Find the number of bacteria after 10 hours.

[10, 10]

END OF EXAMINATION