

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: SEPARATION PROCESSES 1

CODE: CHEP 315

SESSIONAL EXAMINATIONS DECEMBER 2022

DURATION: 3 HOURS

EXAMINER: MISS N.T. MADZIWA

INSTRUCTIONS

- 1. Answer ALL questions
- 2. Start a new question on a fresh page
- 3. Total marks 100
- 4. Formulae sheet is given at the end of the paper.

Additional material(s): Calculator

QUESTION 1			
a) Explain what is meant by separation processes in relation to chemical			
engineering operations.	[2]		
b) Outline any two types of membrane processes and their applications.	[4]		
c) With the aid of well-labelled diagrams, explain the process of reverse			
osmosis.	[8]		
d) With the aid of well-labelled diagrams, explain any two types of membrar	ne		
modules.	[6]		
QUESTION 2			
a) With the aid of well-labelled diagrams, explain the principle of			
electrodialysis.	[8]		
b) Explain the parameters influencing the efficiency of electrodialysis.	[6]		
c) Explain the meaning of these terms as used in thermodynamics			
i. Flow work			
ii. Shaft work			
iii. Isolated system			
iv. Spontaneous process	[4]		
d) Explain entropy and Gibbs energy.	[2]		
QUESTION 3			
QCESTION			
a) Explain the process of crystallization and its applications in separation			
processes.	[6]		
b) With the aid of diagrams, explain the types of flow patterns as used in	r.1		
process mixing.	[6]		
process manig.	[~]		

c) With the aid of diagrams, explain the gas dispersion levels and their applications. [8]

QUESTION 4

a) What is the yield of sodium acetate crystals (CH₃COONa.₃H₂O) obtainable from a vacuum crystalliser operating at 1.33 kN/m² when it is supplied with 0.56 kg/s of a 40 per cent aqueous solution of the salt at 353 K? The boiling point elevation of the solution is 11.5 deg K. [6]

Data:

Heat of crystallisation, q = 144 kJ/kg trihydrate

Heat capacity of the solution, $C_p = 3.5 \text{ kJ/kg deg K}$

Latent heat of water at 1.33 kN/m², λ =2.46 MJ/kg

Boiling point of water at $1.33 \text{ kN/m}^2 = 290.7 \text{K}$

Solubility of sodium acetate at 290.7 K, $c_2 = 0.539$ kg/kg water.

- b) Explain the two types of primary nucleation.
- c) Explain the mechanisms of blending. [6]

[4]

d) Calculate the entropy change of a sample of perfect gas when it expands isothermally from a volume Vi to a volume Vf. Outline the method used and comment your work. [4]

QUESTION 5

a) Calculate the entropy change in the surroundings when 1.00 mol H_2O (I) is formed from its elements under standard conditions at 298 K, we use ΔH° =286 kJ. The energy released as heat is supplied to the surroundings, now regarded as

- being at constant pressure, so q_{surr} =+286 kJ. Comment on your value [4]
- b) What is the theoretical yield of crystals which may be obtained by cooling a solution containing 1000 kg of sodium sulphate (molecular mass =142 kg/kmol) in 5000 kg water to 283 K? The solubility of sodium sulphate at 283 K is 9 kg anhydrous salt/100 kg water and the deposited crystals will consist of the decahydrate (molecular mass = 322 kg/kmol). It may be assumed that 2 per cent of the water will be lost by evaporation during cooling. [6]
- c) State the driving forces for transport in membranes. [4]
- d) State the advantages of using tumbling mixers in solid mixing. [4]
- e) What is supersaturation? [2]

END OF EXAMINATION

LIST OF FORMULAE

Crystal yield initial solvent balance: $w_1 = w_2 + y \frac{R-1}{R} + w_1 E$

Crystal yield solute balance: $w_1c_1 = w_2c_2 + y/R$

Yield for aqueous solutions: $y = Rw_1 \frac{c_{1-c_2 (1-E)}}{1-c_2 (R-1)}$

Quantity from heat balance: $E = \frac{qR(c_1 - c_2) + c_p(T_1 - T_2)(1 + c_1)[1 - c_2(R - 1)]}{\lambda[1 - c_2(R - 1)] - qRc_2}$

Power: $\frac{Power_{gassed}}{Power_{ungassed}} = 0.1 \left(\frac{Q}{NV_L}\right)^{-0.25} \left(\frac{N^2 d^4}{gBV_L^{2/3}}\right)^{-0.20}$