

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: INSTRUMENTATION, PROCESS DYNAMICS AND CONTROL/
PROCESS CONTROL

CODE: CHEP 225/HCHE 322

SESSIONAL EXAMINATIONS
DECEMBER 2022

DURATION: 3 HOURS

EXAMINER: ENG. P. SIGAUKE

INSTRUCTIONS

- 1. Answer ALL FOUR questions
- 2. Start a new question on a fresh page
- 3. Total marks 100

Additional material(s): Calculator

QUESTION 1

a) A process must satisfy several requirements imposed by its designers and the general technical, economic and social conditions in the presence of everchanging external influences (disturbances). Explain how a process can satisfy the following requirements:

ii) environmental regulations [5]

iii) production specifications [5]

iv) operational constraints and economics [5]

(b)Describe and explain any **three** examples of a control system that are encountered in a chemical plant? [5]

QUESTION 2

- (a) The role of a process engineer is to ensure continuous operation with safety by monitoring every single process of an industry. List and explain **five** (5) reasons why process control is vital in industry providing industrial examples. [15]
- (b) Derive transfer function for first order system, G(s) [10]

QUESTION 3

a) Consider a liquid tank of cross-sectional area A in **Fig 1**. The liquid input rate is F_i and the liquid output rate is F_o . The height of the liquid is denoted by h. Derive transfer function for the following tank system [15]

(b) A PID controller is generally used in industrial control applications to regulate temperature, flow, pressure, speed and other process variables.

$$A(s) = K_P e(s) + K_d s + \frac{Ki}{s}$$

Give meaning and formulas for K_d and K_i

c) Fig. 2 shows the process where liquid is flowing into a tank at some rate, Q_{in} , and out of the tank at some rate, Q_{out} .

[5]

The liquid in the tank has some height or level, h. It is known that the output flow rate varies as the square root of the height, $Q_{out} = K\sqrt{h}$, so the higher the level, the faster the liquid flows out.

Given that $K = 1.156$ (gal/min)/ft and suppose the input flow is 5 gal/min, at what	
value of h will the level stabilize from self-regulation?	[5]
QUESTION 4	
(a)Define the following terms:	
i) manipulated variable	[2]
ii)Disturbance variable	[2]
iii)Output variable	[1]
(b) Describe cascade control, and give one concrete example (draw a P&ID)?	[10]
(c)Describe and explain the concept of the feedback and feedforward control sy	stem
using a fully labeled diagram?	[10]
END OF EXAMINATION	
Page 4 of 4	