

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: MASS TRANSFER PROCESSES 1B
CODE: CHEP223

SESSIONAL EXAMINATIONS
DECEMBER 2022

DURATION: 3 HOURS

EXAMINER: ENG P. SIGAUKE

INSTRUCTIONS

- 1. Answer All questions.
- 2. Start a new question on a fresh page
- 3. Show all your steps clearly in your calculations.
- 4. Total marks 100

Additional material(s): Graph papers, Calculator

QUESTION 1				
(a) Define and explain the following adsorption isotherms				
i) Langmuir isotherm	[5]			
ii) Freundlich isotherm	[4]			
iii) Brunauer-Emmett-Teller (BET)	[4]			
(b) Explain the following terms used in humidity				
i) Humid heat	[2]			
ii) Humid volume	[2]			
iii) Dew point	[2]			
(c) Give an explanation of operation of the following towers				
i) atmospheric tower	[3]			
ii) mechanical draft tower	[3]			
QUESTION 2				
a) Define the following terms				
i) Moisture content on dry basis	[2]			
ii) Moisture content on wet basis	[2]			
b) Explain the concept of drying equilibria	[3]			
c) Why is drying an important mass transfer process?	[3]			
b) A wet solid is dried from 22 to 7 per cent moisture under constant drying				
conditions in 16 ks (4.44 h). If the critical and the equilibrium moisture contents				
are 14 and 3 per cent respectively, how long will it take to dry the solid from 29				
to 7 per cent moisture under the same conditions?	[15]			

$$t = \frac{Q}{R_c A} \left[\frac{f_1 - f_c}{f_c} + \ln \left(\frac{f_c}{f} \right) \right]$$

$$f_1 = (w_1 - w_e)$$

$$f_c = (w_c - w_e)$$

QUESTION 3

Acetone (C) is to be extracted from an aqueous solution (500 kg/h, 50 mass % acetone) using TCA (trichloroethane-B) as a solvent in a single stage countercurrent extraction. It is desired to reduce the acetone in the feed to 1 % in the final raffinate. The solvent rate is 800 kg/h and has a composition of 98 % TCA and 2 % acetone. Given the following LLE data:

Raffinate arm (mass fraction)		Extract arm (mass fraction)			
\boldsymbol{x}	x_B	\boldsymbol{x}	y	y	y
0.3	0.1	0.55	0.13	0.27	0.60
0.4	0.07	0.50	0.04	0.46	0.50
0.5	0.03	0.40	0.03	0.57	0.40
0.6	0.02	0.30	0.02	0.68	0.30
0.7	0.01	0.20	0.015	0.78	0.20
0.895	0.005	0.1	0.01	0.89	0.10

- i) Determine the values of the following F, S, $x_{C,F}$, $x_{B,F}$, $y_{C,S}$, $y_{B,F}$ [10]
- ii) Draw the raffinate and extract arms. [15]

QUESTION 4

- (a) Define
 - i) Feed
 - ii) Solvent
 - iii)Extract [3]

Page 3 of 4

- b) Extraction is in many ways complementary to distillation. In which cases is extraction preferable to distillation? Give four (4) cases. [4]
- c) In a single step solid-liquid extraction cotton oil is to be extracted from cotton seed flakes using hexane as solvent.

200kg of the flakes with an oil content of 18 wt% are contacted with 200kg fresh hexane. 1.5kg of inert material holds back a constant value of 1kg solution. Determine the amount (wt%) and composition of the flows leaving the extraction plant. [18]

Hint: Calculate W_{am}, W_{bm}, W_{cm}, W_{aL1}, L₁, V₁, W_{BV1}, W_{CV1}, W_{BL1}, W_{CL1}

END OF EXAMINATION