

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: PRINCIPLES OF CHEMICAL ENGINEERING

CODE: CHEP101/HCHE 111
SESSIONAL EXAMINATIONS

NOVEMBER 2022

DURATION: 3 HOURS

EXAMINER: MR D. NYADENGA

INSTRUCTIONS

- 1. Answer All questions in Section A
- 2. Answer any two questions in Section B
- 3. Start a new question on a fresh page
- 4. Total marks 100

Additional material(s): Periodic Table, Calculator, Steam Tables, Conversions Table

Section A (Answer All questions)

QUESTION A1

a) An orifice meter is used to measure flow rate in pipes. The flow rate is related to the pressure drop by an equation of the form:

$$u = c \sqrt{\frac{\Delta P}{\rho}}$$

where u = fluid velocity, $\Delta P =$ pressure drop, $\rho =$ density of the flowing fluid and c = constant of proportionality

Determine the units of c in the SI system of units. [5]

b) The following equation is proposed to calculate the pressure drop (ΔP) across a length of pipe (L) due to flow through the pipe:

$$\Delta P = \frac{1}{2} v^2 \left(\frac{L}{D}\right) f$$

where v is the average velocity of the fluid flowing through the pipe, D is the diameter of the pipe and f is a dimensionless coefficient.

- i. Determine the dimensional consistency of the equation. [6]
- ii. If not dimensionally consistent, determine the process variable that is missing at the RHS for it to be dimensionally consistent. [4]

QUESTION A2

- a) Phosphoric acid (H₃PO₄) is a colourless, deliquescent acid used in the manufacture of fertilisers and as a flavouring agent in drinks. For a given 10 wt % phosphoric acid solution of specific gravity 1.10 determine:
 - i. The mole fractions of H_3PO_4 and H_2O in the solution. [6]
 - ii. The volume in US gallons of this solution which would contain 1 gmol H₃PO₄. [6]

b) Figure 1 shows how pressure difference between two points of a moving fluid is measured.

Figure 1

i. Show that
$$P_1 - P_2 = (\rho_2 - \rho_1)gh$$
 [4]

- ii. Calculate the pressure difference $(P_1 P_2)$ in **bar** when $\rho_I = 0.91$ g/cm³, $\rho_2 = 13.546$ g/cm³ and h = 1.75 in. [6]
- c) Fifty kilograms of bismuth (MW = 209) is heated along with ten kilograms of sulfur to form Bi_2S_3 (MW = 514) according to the reaction:

$$2Bi + 3S \rightarrow Bi_2S_3$$

The degree of completion is 60%. Determine:

- i. The limiting reactant. [5]
- ii. The percent conversion of the excess reactant. [4]
- iii. The mass of Bi_2S_3 produced. [4]

Section B (Answer any two questions)

QUESTION B1

- a) Define the term *combustion*. [1]
- b) State the products of complete combustion of carbon and hydrogen. [2]
- c) Differentiate between a wet flue gas analysis and an Orsat analysis. [2]

d) 300 kg of C_8H_{18} is burnt in 12% excess air (Air contains 21 mol % O_2 and 79 mol % N_2) to ensure complete combustion. The chemical reaction is as follows:

$$C_8H_{18} + \frac{25}{2}O_2 \longrightarrow 8CO_2 + 9H_2O$$

Calculate:

ii. the number of moles of
$$O_2$$
 in excess. [4]

iii. the number of moles of
$$N_2$$
 supplied. [4]

QUESTION B2

a) Give reasons for the presence of the following streams in a multiple unit processing circuit:

b) In an evaporative crystallisation process, feed solution containing 15 wt % KCl and 85 wt % water at a rate of 400 kg/h is mixed with recycle and fed to an evaporator, which evaporates some of the water so that the concentrated solution has a KCl mass fraction of 0.38. This solution is fed to a crystalliser and filter. The resulting filter cake contains KCl crystals and saturated KCl solution containing 28 wt % KCl. The crystals are 84 % of the total weight of the filter cake. The rest of the saturated KCl solution (filtrate) is recycled. This is shown in Figure 2.

Figure 2

Calculate:

- a) The flow rate of crystals leaving the system.
- b) The flow rate of water vapour.
- c) The flow rate of recycle stream.

[20]

QUESTION B3

a) Define the following terms in relation to energy balance:

b) Determine the phase of water, saturation temperature, specific volume and specific enthalpy under the following state conditions:

c) A well-insulated turbine operating at steady state develops 23 MW of power for a steam flow rate of 40 kg/s. The steam enters at 350 °C with a velocity of 35 m/s and exits as saturated vapour at 0.045 bar with a velocity of 120 m/s. Determine the inlet pressure in bars and the temperature of steam at the exit point.

Page 5 of 6

