

MANICALAND STATE UNIVERSITY

OF APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES AND TECHNOLOGY

DEPARTMENT: MINING AND MINERAL PROCESSING ENGINEERING

MODULE: ROCK MECHANICS

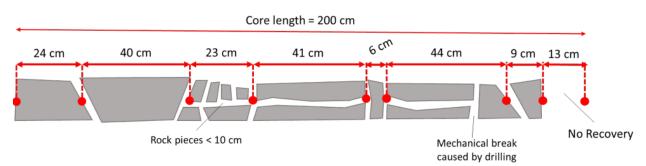
CODE: ENGP 311

SESSIONAL EXAMINATIONS DECEMBER 2023

DURATION: 3 HOURS

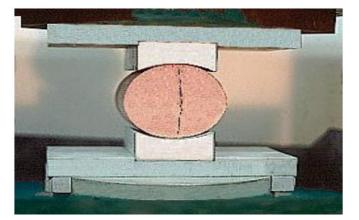
EXAMINER: J.MUCHEMWA

INSTRUCTIONS


- 1. Question 1 and 2 are **compulsory**, and choose any other three (3) questions from **section B**
- 2. Show all working.
- 3. Start a new question on a fresh page
- 4. Total marks 100
- 5. **ADDITIONAL MATERIALS**: graph paper, list of formulae and calculator.

Question 1

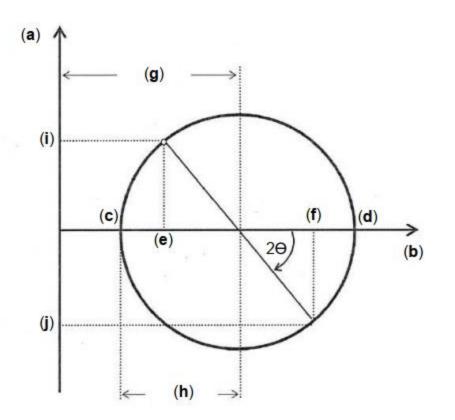
- (a) A tunnel is to be driven through a weathered quartz with the following geologic characters: A point load strength index of 4Mpa, RQD value of 65%, spacing between joints is 450mm, joints are slightly rough and have a separation of less than 1mm, walls are highly weathered, tunneling conditions are anticipated to be damp, the dominant joint sets dips at 30 degrees against the direction of the drive. Using data provided in List of Tables provided;
 - (i) Determine the RMR value for this rock mass. [10]
 - (ii) Recommend possible excavation method and support requirements for this tunnel. [5]
- (b) Discuss limitations of any two primitive methods of rock mass classification systems used in mining. [5]


Question 2

(a) A 200cm borehole log of a rock is illustrated below. Determine the RQD value for this rock sample. [7]

(b) You are the mine manager at an underground mine and you receive a call from mine captain that a massive fall of ground in North 3 section resulted in death of a jumbo operator who was drilling in a raise. A report of fall of ground needs to be compiled and presented to the Ministry of Mines. Briefly list the headings and describe the layout of your report. [7]

(c) Name and describe how the instrument shown below is used in testing strength of rocks in rock engineering. [6]


SECTION B

Answer any *three* questions from this section

Question 3

(a) Given the Mohr's circle of strain below. Name the annotations (a) to (j).

[10]

(b) Readings from a rectangular strain rosette are given below:

- $\mathbf{\varepsilon}_0 = 8\mu$
- $\epsilon_{45} = 11 \mu$
- $\epsilon_{90} = -15\mu$
 - (i) Calculate the magnitude and direction of principal strains and illustrate your results as per Mohr's circle. [10]

Question 4

The Mohr-Coulomb failure envelope of a rock specimen is described by the following relationship: $\tau^2 = \{27,58(\sigma + 2,07)\}$ Mpa.

- (a) Plot the failure envelope for this rock. [10]
- (b) Determine which of the following state of stresses results in the failure of the specimen:

Case 1: $\sigma_1 = 10.5$ Mpa and $\sigma_3 = -5$ Mpa Case 2: $\sigma_1 = 26$ Mpa and $\sigma_3 = -2$ Mpa Case 3: $\sigma_1 = 43$ Mpa and $\sigma_3 = -1.5$ Mpa [10]

Question 5

(a) The table below lists a number of support types used in underground mines. State which support type is active and which is passive at the time of initial installation. Also classify them in terms of what conditions they best operate in? [10]

Support unit	Active/ Passive	Dynamic/Static
		conditions
End-anchor bolts		
Tin cans		
Shepherd crooks		
Pre-stressed mat packs		
Crush pillar		
shotcrete		
Wire mesh and lace		
Cemented backfill		
Timber sets		
Grouted ripple bar		

(b) Define the difference between a seismic event and a rock burst? [2]

- (c) What 4 parameters can be obtained instantly from a seismic monitoring system when a seismic event occurs? [4]
- (d)Briefly describe how do you shotcrete a mined out zone in underground mines. [6]

Question 6

You are appointed the long-wall superintended at a coal mine where there have been 100 reported incidents for slope failures resulting in injuries to personnel and mechanical damages to mine equipment.

- (a) Describe the possible factors which might have contributed to failures of these high walls. [5]
- (b) With aid of diagrams, describe the possible modes in which these failures were occurring. [10]
- (c) It is suggested by a hired geotechnical consultant company that the mine should try "smooth wall blasting" to avoid recurrence of this incident.
 - i. Explain what you understand by term "smooth wall blasting"? [3]
 - ii. What other methods of your choice, besides smooth wall blasting do you suggest to control high wall slope failures? [2]

LIST OF FORMULAE

TABLE 1:

	Param	eter			Range of values				
	Strength of Point-loa intact rock strength material index		>10 MPa	4 - 10 MPa	2 - 4 MPa	1 - 2 MPa	For this low range - uniaxial compressive to is preferred		
1		Uniaxial comp. strength	>250 MPa	100 - 250 MPa	50 - 100 MPa	25 - 50 MPa	5 - 25 MPa	1 - 5 MPa	< ' MF
	Ra	iting	15	12	7	4	2	1	0
	Drill core Q	uality RQD	90% - 100%	75% - 90%	50% - 75%	25% - 50%		< 25%	
	Rati	ing	20	17	13	8		3	
2	Spacing of di	scontinuities	> 2 m	0.6 - 2 . m	200 - 600 mm	60 - 200 mm	< 60 mm		
3	Rat	ing	20	15	10	8		5	
	Very rough surfaces Condition of discontinuities Not continuous (See E) No separation Unweathered wall rock		t continuous separation	Slightly rough surfaces Separation < 1 mm Slightly weathered walls	Slightly rough surfaces Separation < 1 mm Highly weathered walls	Slickensided surfaces or Gouge < 5 mm thick or Separation 1-5 mm Continuous	Soft gouge >5 mm thick or Separation > 5 mm Continuous		
4	Rati	ing	30	25	20	10		0	
		flow per 10 m ngth (l/m)	None tunnel	< 10	10 - 25	25 - 125		> 125	
		oint water press)/ Iajor principal V)	0	< 0.1	0.1, - 0.2	0.2 - 0.5		> 0.5	
G		eneral conditions	Completely dry	Damp	Wet	Dripping	F	lowing	
		ating	15	10	7	4		0	
	TING ADJUS	IMENT FOR DISCO	ONTINUITY ORIENTAT	IONS (See F)		1			
rike a	and dip orienta	itions	Very favorable	Favorable	Fair	Unfavorable	Very	Unfavora	able
	۱	Funnels & mines	0	-2	-5	-10		-12	
R	atings	Foundations	0	-2	-7	-15		-25	
	-	Slopes	0	-5	-25	-50			
RO	CK MASS CL	ASSES DETERMIN	NED FROM TOTAL RA						

Page **7** of **10**

Rating	100- 81	80-61	60- 41	40-21	< 21		
Class number	I	II	Ш	IV	V		
Description	Very good rock	Good rock	Fair rock	Poor rock	Very poor rock		
D. MEANING OF ROCK CLASSES							
Class number	1	II	111	IV	V		
Average stand-up time	20 yrs for 15 m span	1 year for 10 m s can	1 week for 5 m span	10 hrs for 2.5 m span	30 min for 1 m span		
Cohesion of rock mass (kPa)	> 400	300 - 400	200 - 300	100 - 200	< 100		
Friction angle of rock mass (deg)	> 45	35 - 45	25 - 35	15 - 25	< 15		
E. GUIDELINES FOR CLASSIFICAT		conditions					
Discontinuity length (persistence) Rating	< 1 m 6	1 - 3 m 4	3 - 10 m 2	10 - 20 m 1	> 20 m 0		
Separation (aperture) Rating	None 6	< 0.1 mm 5	0.1 - 1.0 mm 4	1 - 5 mm 1	> 5 mm 0		
Roughness Rating	Very rough 6	Rough 5	Slightly rough 3	Smooth 1	Slickensided 0		
Infilling (gouge) Rating	None 6	Hard filling < \m 5 4	Hard filling > 5 mm 2	Soft filling < 5 mm 2	Soft filling > 5 mm 0		
Weathering Ratings	Unweathered 6	Slightly weather ed 5	Moderately weathered 3	Highly weathered 1	Decomposed 0		
F. EFFECT OF DISCONTINUITY STI TUNNELLING**	RIKE AND DIP ORIENTAT	ION IN					
Strike perpendicular to tunnel axis			Strike parallel to tunnel axis				
Drive with dip - Dip $45 - 90^{\circ}$	Drive with dip -	ive with dip - Dip 20 – 45° Dip 45 – 90°		Dip 20 – 45°			
Very favorable	Favora	ble	Very unfavorabl	e	Fair		
Drive against dip - Dip 45-90°	Drive against dip - Dip 20-45°		Dip 0-20 - Irrespective of strike				
Fair	Fair Unfavorable			Fair			

Rock mass class	Excavation	Rock bolts (20 mm diameter, fully grouted)	Shotcrete	Steel sets
I - Very good rock <i>RMR</i> : 81-100	Full face, 3 m advance.	Generally no support re	ot bolting.	
II - Good rock <i>RMR</i> : 61-80	Full face , 1-1.5 m advance. Complete support 20 m from face.	Locally, bolts in crown 3 m long, spaced 2.5 m with occasional wire mesh.	50 mm in crown where required.	None.
III - Fair rock <i>RMR</i> : 41-60	Top heading and bench 1.5-3 m advance in top heading. Commence support after each blast. Complete support 10 m from face.	Systematic bolts 4 m long, spaced 1.5 - 2 m in crown and walls with wire mesh in crown.	50-100 mm in crown and 30 mm in sides.	None.
IV - Poor rock RMR: 21-40	Top heading and bench 1.0-1.5 m advance in top heading. Install support concurrently with excavation, 10 m from face.	Systematic bolts 4-5 m long, spaced 1- 1.5 m in crown and walls with wire mesh.	100-150 mm in crown and 100 mm in sides.	Light to medium ribs spaced 1.5 m where required.
V – Very poor rock <i>RMR</i> : < 20	Multiple drifts 0.5-1.5 m advance in top heading. Install support concurrently with excavation. Shotcrete as soon as possible after blasting.	Systematic bolts 5-6 m long, spaced 1-1.5 m in crown and walls with wire mesh. Bolt invert.	150-200 mm in crown, 150mm in sides, and 50 mm on face.	Medium to heavy ribs spaced 0.75 m with steel lagging and forepoling if required. Close invert.

APPENDIX B

$$\tan 2\theta = \frac{\gamma_{xy}}{(\varepsilon_x - \varepsilon_y)} \qquad \tan 2\theta = \frac{2\tau_{xy}}{(\sigma_x - \sigma_y)}$$

$$\varepsilon_1 = \frac{1}{2} \left(\varepsilon_x + \varepsilon_y \right) + \frac{1}{2} \sqrt{\left(\varepsilon_x - \varepsilon_y \right)^2 + \gamma_{xy}^2} \qquad \sigma_1 = \frac{1}{2} \left(\sigma_x + \sigma_y \right) + \frac{1}{2} \sqrt{\left(\sigma_x - \sigma_y \right)^2 + 4\tau_{xy}^2}$$

$$\varepsilon_2 = \frac{1}{2} \left(\varepsilon_x + \varepsilon_y \right) - \frac{1}{2} \sqrt{\left(\varepsilon_x - \varepsilon_y \right)^2 + \gamma_{xy}^2} \qquad \sigma_2 = \frac{1}{2} \left(\sigma_x + \sigma_y \right) - \frac{1}{2} \sqrt{\left(\sigma_x - \sigma_y \right)^2 + 4\tau_{xy}^2}$$

$$\varepsilon_n = \varepsilon_1 \sin^2 \theta + \varepsilon_2 \cos^2 \theta \qquad \sigma_n = \sigma_1 \sin^2 \theta + \sigma_2 \cos^2 \theta$$

$$\varepsilon_n = \frac{1}{2} \left(\varepsilon_x + \varepsilon_y \right) + \frac{1}{2} \left(\varepsilon_x - \varepsilon_y \right) \cos 2\theta \qquad \sigma_n = \frac{1}{2} \left(\sigma_x + \sigma_y \right) + \frac{1}{2} \left(\sigma_x - \sigma_y \right) \cos 2\theta$$

$$\gamma_{nm} = -(\varepsilon_1 - \varepsilon_2) \sin 2\theta \qquad \tau_{xy} = -\frac{1}{2} \left(\sigma_1 - \sigma_2 \right) \sin 2\theta$$

$$\gamma_{max} = \sqrt{\left(\varepsilon_x - \varepsilon_y \right)^2 + \gamma_{xy}^2} \qquad \tau_{max} = \sqrt{\left(\sigma_x - \sigma_y \right)^2 + 4\tau_{xy}^2}$$

Page **9** of **10**

$$\sigma_n = \sigma_x \cos^2 \theta + 2\tau_{xy} \sin \theta \cos \theta + \sigma_y \sin^2 \theta$$

$$au_{nm} = rac{1}{2} \left(\sigma_y - \sigma_x
ight) \sin 2 heta + au_{xy} \cos 2 heta$$

 $q = \rho g h$ $\sigma_v = q$ $\sigma_h = k q$ $k = \frac{v}{1-v} P = \frac{\sigma_v}{(1-e)}$

$$RQD = 115 - 3.3J_v$$

 $RQD = (Total \ length \ of \ core \ge 100 mm)/(Length \ of \ core \ run)$

END OF EXAM