

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF APPLIED SCIENCES & TECHNOLOGY DEPARTMENT OF APPLIED STATISTICS

MODULE: ESTIMATION TECHNIQUES

CODE: ASTA 223

SESSIONAL EXAMINATIONS

DECEMBER 2023

DURATION: 3 HOURS

EXAMINER: MR M. TSODODO

INSTRUCTIONS

- 1. Answer All in Section A
- 2. Answer two questions in Section B.
- 3. Start a new question on a fresh page
- 4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator.

Statistical tables

SECTION A

Question 1

Identify and name any;

- i) Four probability densities where the parametric space p = 1. [4]
- ii) Two probability functions where the parametric space p = 2. [2]

Question 2

Let X_1, \dots, X_n be a random sample obtained from a population with mean μ . Show that $\hat{\mu} = \bar{x}$ is an unbiased estimator of μ .

Ouestion 3

Consider the sample X_1, \dots, X_n drawn from a normal population with mean μ and variance δ^2 . What is the MLE of:

a)
$$\tau = \frac{\mu}{n}$$

- b) The variance δ^2
- c) $Log \sigma$.

Ouestion 4

Let Y be a random variable with mean $\mu(\alpha, \beta) = \alpha + \beta x_i$. Find the least squares estimates of α and β based on the realization $(y_1, x_1), \dots (y_n, x_n)$. [8]

Question 5

A laboratory test is 95% effective in detecting a certain disease when it is in fact, present. However, the test yields a 'false positive' result of 1% of the health persons tested. Suppose that 0.5% of the population has the disease. Calculate the probability that a person has the disease given that the test result is positive. [5]

Question 6

Let X_1, \dots, X_n be a random sample obtained from a Bernoulli distribution that has the parameter θ .

- a) Find a lower bound of the variance of T if T is an unbiased estimator of $\tau(\theta) = \theta$. [8]
- b) Show that \bar{X} is an UMVUE of θ . [3]

SECTION B

Question 7

Let X_1, \dots, X_n be a random sample obtained from a Raleigh distribution whose density is:

$$f_X(x,v) = \frac{x}{v} \exp[-x^2/2v], \text{ for } x > 0$$

a) Is the maximum likelihood estimator of V an unbiased estimator? [4]

b) Determine whether $f_X(x, v)$ is a member of the exponential class of distribution [3] c) Find a minimal sufficient statistic V [5] d) Find the Cramer-Rao lower bound of the variance of unbiased estimator of V. [6] e) Find a complete statistic [6] f) Find an UMVUE of V. [6]

Question 8

- a) Let X_1, \dots, X_n be a random sample from a Poisson distribution with unknown parameter θ , that is. $P(X = x) = f_X(x; \lambda) = \frac{e^{-\theta} \theta^x}{x!} . I_{\{0,1,\dots\}}(x)$ where $\lambda \ge 0$.
 - i) Assuming a uniform prior density θ , find the posterior distribution of θ . [10]
 - ii) Assuming a gamma prior density for θ , Find the posterior distribution of θ .

Find the Bayes' estimator of θ [5]

[10]

Find the posterior Bayes' estimator of $\tau(\theta) = P[X_i = 0]$ [5]

Question 9

a) Suppose a random sample X_1, \dots, X_n of size 2 is drawn from a Bernoulli distribution

$$P(x) = P^{x}(1-P)^{1-x}, \quad x = 0.1$$

- i) List all the possible samples of size 2 that can be selected [4]
- ii) Find in terms of P the probability of selecting the sample $\{1,0\}$. [4]
- iii) Find the likelihood function of $\{1,0\}$. Hence find the value of P which maximises the probability of selecting $\{1,0\}$.
- Find in terms of x_1, x_2 , the value of the parameter P that maximises the likelihood function L(P). [8]
- b) State the (Rao Blackwell Theorem). [3]
- c) Suppose X is a binomially distributed random variable, ie. $X \sim Binomial(n, p)$. Show that the distribution of X is a member of the exponential class. [5]