

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF APPLIED SCIENCES & TECHNOLOGY DEPARTMENT OF APPLIED STATISTICS

MODULE: MATHEMATICAL DISCOURSE AND STRUCTURES

CODE: ASTA 123

SESSIONAL EXAMINATIONS
DECEMBER 2023

DURATION: 3 HOURS EXAMINER: D. MHINI

INSTRUCTIONS

- 1. Answer All in Section A
- 2. Answer **three** questions in Section B.
- 3. Start a new question on a fresh page
- 4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator and statistical tables.

SECTION A (Answer ALL Questions from this Section)

A1 Define the following structures

A2. (a) $B = \{1, 0\}$ and let two operations + and * be defined on B as follows:

+	1	0
1	1	1
1	1	0

and

*	1	0
1	1	1
0	1	0

Show that B is a Boolean algebra.

[5]

(b) Prove the absorption laws:

$$(i) A \cup (A \cap B) = A$$
 [3]

$$(ii) A \cap (A \cup B) = A$$
 [3]

A3. (a) Draw the parallel combination switch of
$$P \wedge Q$$
. [2]

(c) The mapping
$$f: \mathbb{Z} \to \mathbb{Z}$$
 is given by $f(x) = x^4 - 1$.

(i) What is the image of
$$f$$
. [2]

(ii) Is
$$f$$
 injective, surjective? [2]

A4. (a) xRy means x + y is an integer where $x, y \in \mathbb{Z}$. Determine whether the relation in \mathbb{Z} an equivalence relation. [5]

(b) Solve
$$2x - 1 = 0 \pmod{15}$$

(c) Let A and B be non-empty sets. Prove that if
$$A \times B = B \times A$$
 then $A = B$

SECTION B (Answer any **THREE** Questions from this Section)

B5 Let $A = \{a, b\}$ be a set with multiplication defined by the group

	a	b
a	a	b
b	b	b

Show that *A* is not a group. [5]

(b) Prove that
$$a * a = a$$
 [5]

(c) Draw a Cayley table of
$$(\mathbb{Z}, +)$$
 where \mathbb{Z}_6 denotes integers modulo 6. [5]

(d) Prove that
$$(\mathbb{Z}, +)$$
 is a group. [5]

(b) Prove that
$$p \to (q \land r) \equiv (p \to q) \land (p \to r)$$
 is logically equivalent. [5]

(d) Let the function $f: \mathbb{R} \to \mathbb{R}$ be defined by;

$$f(z) = \begin{cases} 3z - 1 & if \ z > 3 \\ z^2 + y & if \ 2 \le z \le 3 \\ 2z + 3 & if \ z < -2 \end{cases}$$

Find (i) f(2) [1]

(ii)
$$f(4)$$

$$(iii) f(-1)$$

(iv)
$$f(-3)$$

(e)Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions

(i) Show that if
$$g * f$$
 is injective the f is injective. [2]

(ii) Show that if
$$g * f$$
 is surjective then g is surjective. [2]

B7 (a) Solve the system of congruence

 $2x \equiv 3 \pmod{5} \quad ; \quad 3x \equiv 2 \pmod{4}$

(b) Let (G, o) and (H, \times) be groups. Prove that $(G \times H, \triangle)$ the direct product of G and H is abelian iff G and H are both abelian. [8]

- (c) Let $X = \{p, q, r\}$. List the elements of $\mathcal{P}\{X\}$. [5]
- **B8** (a) Prove that $(A_1 A_2) \cap (A_1 A_3) = A_1 (A_2 \cup A_3)$ where A_1, A_2 and A_3 are any sets. [5]
- (b) Define a relation. [1]
- (c) Let $\theta: G \to K$ be a group homomorphism. Prove that $Ker \theta \triangleleft G$.
- (d) Prove DeMorgan's laws

$$(A \cup B)' = A' \cap B'$$
; $(A \cap B)' = A' \cup B'$

(e)Show that the composition of surjective, injective and bijective mappings is respectively surjective, injective and bijective. [2]

END OF EXAMINATION PAPER