

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES & TECHNOLOGY

DEPARTMENT OF APPLIED STATISTICS

MODULE: CALCULUS

CODE: ASTA 110

SESSIONAL EXAMINATIONS

DECEMBER 2023

DURATION: 3 HOURS

EXAMINER: MR W NKOMO

INSTRUCTIONS

- 1. Answer All in Section A
- 2. Answer **three** questions in Section B.
- 3. Start a new question on a fresh page
- 4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator.

List of Formulae

SECTION A [40 MARKS]

Answer ALL questions in this section

A1. Define the limit of a function
$$f(x)$$
, on an open interval c. [2]

A2. Given that
$$y = f(x) = \begin{cases} x^2, -1 \le x \le 0 \\ 1, & x = 0 \\ x^2, 0 \le x \le 1 \\ 0, 1 \le x \le 2 \end{cases}$$

a) Sketch the graph of
$$y = f(x)$$
. [4]

b) Using your graph, evaluate

i)
$$\lim_{x \to -1^+} f(x)$$

ii)
$$\lim_{x\to 0^-} f(x)$$

iii)
$$\lim_{x\to 0} f(x)$$

$$\lim_{x \to 2^+} f(x)$$
 [2×4]

c) Does
$$\lim_{x \to -1^{-}} f(x)$$
 exist? Justify. [3]

d) Verify that
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} f(x)$$
 [3]

A3. (a) Find a possible sequence U_n , whose first five terms are 1, 7, 17, 31, 49.[5]

(b) Find the first five (5) terms of the sequence, U_n , defined by $U_n = U_{n-1} + \cdots + U_n$

$$U_{n+2}, \ U \ge 3 \text{ and } U_1 = U_2 = 1.$$
 [5]

A4. (a) Evaluate
$$\frac{d}{dx}(x^x)$$
. [4]

(b) Show that f(x) = sinx is differentiable everywhere and that

$$f'(x) = \cos(x). ag{6}$$

SECTION B [60 MARKS]

Answer any **THREE** questions in this section

B1. (a) Apply L 'Hospital's rule to prove that
$$\lim_{n\to\infty} \frac{\ln{(n)}}{n} = 0$$
. [5]

(b) Use Squeeze theorem to find the $\lim_{t \to 0} U(t)$ no matter how complicated U is

given that
$$2 - \frac{t^2}{5} \le U_t \le 2 + \frac{t^2}{3} \ \forall_t \ne 0.$$
 [6]

(c) Evaluate (i)
$$\frac{d}{dt}$$
 (tanh ($\sqrt{(1+t^2)}$)

(ii)
$$\int_0^{\ln 2} 4e^x \sinh x dx$$
 [5]

B2. (a) Prove by induction that for all possible integers n,

$$\frac{1}{2^1} + \frac{1}{2^2} \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$
 [7]

(b) Find $\frac{dy}{dx}$ if

(i)
$$y = \frac{1}{x}(x^2 + e^x)$$
 [3]

(ii)
$$y = \frac{t^2 - 1}{t^3 + 1}$$
 [3]

(iii)
$$y = \cos u$$
, $x = 1 + u^2$ [4]

(d) Find the set of values of
$$x$$
 for which $\frac{1}{x-2} > \frac{2}{x+3}$ holds. [3]

B3. (a) Solve the differential equation
$$y(x+1)\frac{dy}{dx} = x(y^2+1)$$
 [8]

b) The biomass of a yeast culture in an experiment is initially 29 grammes. After 30 minutes, the mass is 37 grammes. Assuming the equation for unlimited population growth gives a good model for the growth of the yeast when the mass is below 100 grammes, how long will it take for the mass to double from its initial value?

B4. (a) Find
$$\frac{dy}{dx}$$
 if $y = e^{2xy} + y\sin x - 3xy^2 + 6$. [5]

- (b) Find the equation of the normal to the curve $3x^2 7y^2 + 4xy 8x = 0$ at the point (-1;1). [5]
- (c) Find
- (i) the area bounded by the x-axis and the curve $y = 4 x^2$. [5]
- (ii) the volume generated by revolving the region in part (i) about the x-axis. [5]

*********THE END******