MANICALAND STATE UNIVERSITY OF

APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES AND TECHNOLOGY

DEPARTMENT OF APPLIED STATISTICS, DEPARTMENT OF COMPUTER SCIENCE

MODULE: CALCULUS 1
CODE: ASTA 102/ASTA110
MODULE: CALCULUS
CODE; ASTA 110
SESSIONAL EXAMINATIONS
DECEMBER 2023

DURATION: 3 HOURS
EXAMINER: NYAKUAMBA T

INSTRUCTIONS

1. Answer All in Section A
2. Answer three questions in Section B.
3. Start a new question on a fresh page
4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator.

SECTION A (40 marks)

Answer ALL Questions

A1. a) What do we mean when we say a function is continuous at x_{0}
b) Prove that $f(x)=x^{2}$ is continuous at $x=2$

A2 Let $f(x)=\left\{\begin{array}{c}\frac{|x-3|}{x-3} \\ 0 ; x=3\end{array} \quad ; x \neq 3\right.$
(a) Graph the function $f(x)$
(b) Find the $\lim _{x \rightarrow 3^{+}} f(x)$
(c) Find the $\lim _{x \rightarrow 3^{-}} f(x)$
(d) Find the $\lim _{x \rightarrow 3} f(x)$

A3 Evaluate each of the following limits
(a). $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{y_{\sin x}}}{x}$
(b). $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}-y^{2}+5}{x^{2}+y^{2}+2}$

A4. Differentiate the following functions with respect to x
(i) $f(x)=x^{2}-\frac{1}{\sqrt{x}}+\ln x$
(ii) $x^{2}-x y+y^{2}=0$
(iii) $x=\cos 2 t ; \quad y=\sin 2 t$

A5) Find the set of valves of x for which the following set of inequalities hold

$$
\begin{align*}
& \text { (a) } 2 x^{2}-3 x-5 \geq 0 \tag{4}\\
& \text { (b) } \frac{1}{x-2}>\frac{2}{x+3} \tag{4}
\end{align*}
$$

SECTION B. (60 Marks)

Candidate may attempt three questions being careful to number them B6 to B9

B6.(i) Evaluate the following limits
a) $\lim _{n \rightarrow \infty}\left(\frac{1-\cos x}{x^{2}}\right)$
b) $\lim _{n \rightarrow 2}\left(\frac{3 n^{4}-8 n^{3}+16}{x^{3}-3 x^{2+4}}\right)$
c) $\lim _{n \rightarrow 0} \frac{\sin x}{x}$
d) $\lim _{x \rightarrow 5} 3$
e) $\lim _{n \rightarrow \infty}(\sqrt{n+10}-\sqrt{n})$
(ii)Solve the following equations
(a) $|3+2 x|=2|x+1|$
(b) $\frac{2}{7 x}-\frac{4}{3 x}>1$
$B 7$ (a) Differentiate the following functions with respect to x
(i) $y=3 x^{2}+2 x+7+e^{3 x^{2}-3 x+6}$
(ii) $y=\frac{e^{x}}{e^{x}-e^{-x}}$
(iii) $y=\frac{1}{x^{2}}$
[2]
b) Integrate the following functions with respect to x.
i) $\frac{\operatorname{Cos} x-\operatorname{Sin} x}{\operatorname{Sin} x+\operatorname{Cos} x}$
ii) $3 e^{-3 x}-\frac{1}{2} e^{2 x}$
iii) $(3 x+5)^{5}$
iv) $\operatorname{Cos}(6-7 x)$

B8 a) Evaluate $\iiint_{Q} f(x, y, z) d V$ Were

$$
\begin{equation*}
Q=\{(x, y, z):-1 \leq x \leq 3,1 \leq y \leq 4,0 \leq z \leq 2\} \tag{6}
\end{equation*}
$$

b) Given that $x=3(2 \theta-3 \operatorname{Sin} 2 \theta)$ and $y=3(1-\operatorname{Cos} 2 \theta)$

Find $\frac{d y}{d x}$
c) Find the equation of the tangent to the curve $3 x^{2}-7 y^{2}+4 x y-8 x=0$ at the point $(-1,1)$.
d)(i) Define $\cosh x$ and $\sinh x$ in terms of exponentials.
(ii)Using the definition in (i) above show that
$\frac{d}{d x} \cosh (x)=\sinh (x)$
B 9. (a) Prove by induction that

$$
\begin{equation*}
\sum_{r=1}^{n} r^{2}=\frac{n}{6}(n+1)(2 n+1) \text { for all } n \in \mathcal{R} \tag{7}
\end{equation*}
$$

(b) (i) Integrate $x^{2} e^{x}$ with respect to x
(c) Find (i) the area bounded by the X-axis and the curve $y=4-x^{2}$
(ii) the volume generated by revolving the region in part (i) about
the X-axis
[3,3]
(d)Find the length of an arc of the parabola $y=x^{2}$ from $x=0$ to $x=1$

END OF QUESTION PAPER

