

MANICALAND STATE UNIVERSITY

OF APPLIED SCIENCES

FACULTY OF ENGINEERING, SCIENCE AND TECHNOLOGY

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: PHYSICAL CHEMISTRY FOR ENGINEERS CODE: ENGT 104

> SESSIONAL EXAMINATIONS JUNE 2023

> > **DURATION: 3 HOURS**

EXAMINER: MR M. MAPOSA

INSTRUCTIONS

- 1. Answer Any four Questions
- 2. All questions carry equal number of marks
- 3. Start a new question on a fresh page
- 4. Total marks 100

Additional material(s): Chemistry data booklet, Graph paper

Page 1 of 5

In this question you can use the following constants:

Planck's Constant = 6.63×10^{-34} Js, Electron mass = 9.11×10^{-31} kg, 1 eV = 1.602

x 10^{-19} J, speed of light = 3 x 10^8 m/s

a) Explain the following observations made during a photoelectric investigation

- electrons ejected from the same metal surface during photoelectric emission have different kinetic energies
- (ii) the intensity of light incident on a metal surface increases the number of ejected electrons
- (iii) frequency of the incident light increases the kinetic energy of the ejected electrons
- (iv) only light of a certain minimum frequency can result in photoelectric emission
- (v) different metals have different work functions [10]
- b) Calculate the maximum kinetic energy, (KE) and velocity of an electron ejected from zinc by a 250 nm photon, given that zinc has a work function of 4.31 eV

[4]

[3]

- c) Determine by means of a calculation whether a photon of wavelength 300 nm incident on a zinc surface would result in photoelectric emission or not [4]
- d) A beam of light of frequency 3.13 x 10¹⁵ Hz incident on a silver surface gave out photo electrons with maximum kinetic energy of 8.22 eV. Deduce the work function of silver
- e) State any three applications of photoelectric effect

- a) De Broglie is one of the scientists who contributed significantly to the idea of wave particle duality. He made it possible to calculate the wavelength of any moving object.
 - i. Give the De Broglie expression
 - ii. Calculate the de Broglie wavelength of
 - 1 a 2 tonne car traveling at a speed of 45 m/s
 - 2 An electron travelling at a speed of 100 m/s
 - iii. Explain fully why the wavelength of the car is insignificant to consider
 - iv. At what velocity in m/s would that 2 tonne car travel so as to have the same wavelength as an electron travelling at 100 m/s [12]
- b) State the strengths of Raman spectroscopy over other molecular spectroscopic techniques
 [6]
- c) Draw a schematic diagram to show the components of a single beam UV-VIS spectrometer [4]
- d) State any two strengths and one limitation of UV-VIS spectroscopy [3]

QUESTION 3

- a) Briefly describe the significance of the following concepts in the study of reaction kinetics
 - i) Collision theory
 - ii) Complex reaction
 - iii) Chain initiation
 - iv) Activation energy
 - v) Arrhenius equation
- b) The following data of rate constants was collected at different temperatures from a series of experiments carried out on the reaction: 2N₂O₅→2N₂O₄+O₂

[10]

Page 3 of 5

T/K	298	308	318	328	338	
K (s ⁻¹)	1.74x10 ⁻⁵	6.66x10 ⁻⁵	2.51x10 ⁻⁴	7.59x10 ⁻⁴	2.40x10 ⁻³	

- i) Copy and complete the table by creating space for the values of ln k and 1/T
- ii) Plot a graph of ln k against 1/T
- iii) Use your graph to find a value for the activation energy of the reaction
- iv) What would be the rate constant k if this same reaction was carried out at 350 K
- c) Briefly distinguish between unimolecular elementary step and bimolecular elementary step showing the nature of the rate law in each case

- a) Compare and contrast
 - i) Reaction intermediate and a transition state
 - ii) Reaction mechanism and reaction profile
 - iii) Lindeman theory and RRKM theory in the kinetics of gaseous reactions

[12]

[3]

 b) The reaction of dinitrogen pentoxide to produce nitrogen dioxide and oxygen has the following mechanism

$$N_{2}O_{5} \stackrel{k_{f}}{\rightleftharpoons} NO_{2} + NO_{3}$$
$$k_{b}$$
$$NO_{2} + NO_{3} \stackrel{k_{2}}{\rightarrow} NO_{2} + NO + O_{2}$$
$$NO_{3} + NO \stackrel{k_{3}}{\rightarrow} 2NO_{2}$$

Use steady state approximation to deduce the expression for the

i) Concentration of the intermediate *NO*

Page 4 of 5

- ii) Concentration of the intermediate NO₃
- iii) Rate of the overall reaction in terms of change in concentration of N_2O_5
- iv) Overall rate constant K in terms of k_f , k_3 , k_2 and k_b [13]

- a) Beer's law can be used to evaluate concentration from absorbance of an analyte.
 - i) State Beer's law and highlight the significance of each term
 - ii) The calibration curve used to analyse the concentration of a pollutant in the effluent had a line of best fit represented by the equation;

y = 0.998x + 0.01.

Calculate the concentration of the pollutant in an effluent sample which gave an absorbance reading of 0.06.

- iii) In another different experiment, phenol concentration was analysed using UV-VIS. A sample of concentration 0.05 moldm⁻³ gave an absorbance value of 412 using cells of pathlength one centimeter. Deduce a value for the molar absorptivity (£) with correct units. [12]
- b) CO_2 is an ir active molecule.
 - i) Explain fully the meaning of this statement
 - ii) Calculate the degrees of freedom for the vibrations of the following molecules $1. CO_2$
 - 2. SO_2
 - 3. CH_3CH_3 [13]

END OF EXAMINATION