

MANICALAND STATE UNIVERSITY

OF APPLIED SCIENCES

FACULTY OF ENGINEERING, SCIENCE AND TECHNOLOGY

CHEMICAL AND PROCESSING ENGINEERING DEPARTMENT

REACTOR ANALYSIS AND DESIGN I/CHEMICAL REACTION ENGINEERING I

CODE: CHEP 214/HCHE 221

SESSIONAL EXAMINATIONS JUNE 2023

DURATION: 3 HOURS

EXAMINER: MS H. TOM

INSTRUCTIONS

- 1. Answer all questions
- 2. Each question carries 25 marks
- 3. Total marks 100

Additional material; Graph Paper

Page 1 of 8

QUESTION ONE

(a) Differentiate <i>elementary</i> and <i>non-elementary reactions</i> .	[2]			
(b) On doubling the concentration of a reactant, the rate of reaction triples. Find the				
reaction order.	[2]			
(c) With the aid of an illustration define fractional conversion, X_A	[2]			
(d) For an irreversible gas phase reaction $4A \rightarrow 7R$, determine the value of \mathscr{E}_A if the				
feed is a mixture of 60 % A and 40 % inert.	[3]			
(e) Acetaldehyde (CH ₃ CHO) decomposes in a batch reactor operating at 520 °C and				
101 kPa. The reaction stoichiometry is $CH_3CHO(g) \rightarrow CH_4(g) + CO(g)$. U	Jnder			
these conditions the reaction is known to be irreversible with a rate constant of 430				
cm ³ /mol sec. If 100 g/s of acetaldehyde is fed to the reactor, determine the reactor				
volume necessary to achieve 35 % decomposition.	[7]			
(f) The schematic reaction $A + B \rightarrow P$ is assumed to consist of two elementary steps:				
1. $A + B \rightarrow A^* + B$ (forward reaction rate = k_1 ;				
2. (reverse reaction rate = k_{-1})				

- 3. $A^* \rightarrow P$ (forward reaction rate = k₂). Show that using steady state approximation d[P]/dt = (k₁k₂ [A] [b])/ (k₋₁[B] +k₂). [5]
- (g) For a gas reaction at 200 K, the rate is reported as

$$\frac{dpA}{dt} = 2.0 \text{ p}_{\text{A}}^2 \text{ atm/h}$$

- (i) What are the units of the rate constant?
- (ii)What is the value of the rate constant for this reaction if the rate equation is written as

[2]

Page **2** of **8**

$r_{A} = \frac{-1}{V} \frac{dNA}{dt} = k C_{A}^{2}, \text{ mol/l.h}$			[2]	
	QUESTION	N TWO		
(a) (i) Define the term 'specif	ic reaction rate	e' or 'rate of reaction	[1]	
(ii) Given that: $3A + 7B \rightarrow 7 C$, what is the r	relationship bet	ween r_A , r_B and r_C ?	[3]	
(b) A <i>l</i> liter per minute of liqu	id containing A	and B ($C_{Ao} = 0.30 \text{ mol/liter}$,	$C_{Bo}=0.05$	
mol/liter) flow into a mixed r	eactor of volum	me, $V = 1$ liter. The material	ls react in a	
complex manner for which the	e stoichiometry	is unknown. The outlet strea	am from the	
reactor contains A, B, and C	$(C_{Af} = 0.08 m m)$	$ol/litre, C_{Bf} = 0.07 mol/litre,$	$C_{Cf} = 0.03$	
mol/liter). Find the rate of re	eaction of A, I	B, and C for the conditions	within the	
reactor.			[5]	
(c) (i) What is a <i>mixed flow reactor</i> ?			[1]	
(ii) State two advantages o	f a mixed flow	reactor	[2]	
(d) A mixed flow reactor is	used to deter	mine the kinetics of a reac	tion whose	
stoichiometry $A \rightarrow R$. The flow	w rate of an aqu	eous solution of 100 mol A/	L to a	
<i>1 litre</i> reactor are used and for	each run and c	outlet concentration of A is m	neasured	
Find the rate equation to represent the following data:				
$V_0/L/min$ 1	3	12		
C _A /mol/L 2	10	25		
			[10]	
(e) Define \mathcal{E}_A			[1]	
Page 3 of 8				

(ii) Which two reactor types performance is identical for constant density systems?

[2]

[2]

QUESTION THREE

3.(a) State any **three** different factors to be considered for reactor design? [3]

(b) With the aid of equations distinguish between *holding time* and *space* time. [4]
(c) At 76 °C *NH*₃ decomposes as follows:

 $2NH_3(g) \rightarrow N_2(g) + 3H_2(g),$ $r_{\rm NH3} = 10 \ h^{-1}C_{\rm NH3}$

determine the size of PFR operating at 76 °C and 200 atm needed for 80 % conversion of 10 mol/h NH_3 in a 0.67 NH_3 and 0.33 inert feed. [8]

(d) A specific enzyme acts as a catalyst in fermentation of reactant A. At a given enzyme concentration in aqueous feed of 10 L /min, find the volume of the MFR needed for 90 % conversion of reactant A ($C_{Ao} = 1 mo/L$). The kinetics of the fermentation reaction at this enzyme concentration is given by:

$$\mathbf{A} \rightarrow \mathbf{R}, \qquad \mathbf{r}_{\mathbf{A}} = \frac{0.1 C_A}{1 + 0.5 C_A} \frac{mol}{liter.min}$$
 [7]

(ii) State any two classes of such reactions.

QUESTION FOUR

(a) State the differences between *differential* and *integral* method of analysis of batch reactor data. [7]

(b) At 300 °C a substance A decomposes as follows:

$$4A(g) \rightarrow B(g) + 6C(g) , \quad -r_A = 10 \ h^{-1}C_A$$

Find the size of the MFR operating at $300 \, ^{\circ}C$ and $11.4 \, atm$ needed for 70 % conversion of $10 \, mol/h$ of A in a 70% A and 30 % inerts feed. [7]

Page 4 of 8

(c) The gaseous feed of pure A (1 mol/L) enters a mixed flow reactor of volume 4 liters and reacts as follows

$$2A \rightarrow R$$
, $r_A = 0.5C_A^2$ mol/L s

- (i) What is the order of this reaction?
- (ii) Calculate the feed rate in liters/min of the outlet concentration given that $C_A = 0.5 \text{ mol/L}$ [5]

(d) With the aid of diagram show the different types of semi-batch reactors. [6]

END OF EXAM

LIST OF FORMULAE

$$t = N_{AO} \int_{0}^{X_A} \frac{dX_A}{-r_A V}$$
$$t = C_{AO} \int_{0}^{X_A} \frac{dX_A}{-r_A} = -\int_{C_{AO}}^{C_A} \frac{dC_A}{-r_A}$$
$$\tau = N_{AO} \int_{0}^{X_A} \frac{dX_A}{(-r_A)V_O(1 + \varepsilon_A X_A)} = C_{AO} \int_{0}^{X_A} \frac{dX_A}{(-r_A)(1 + \varepsilon_A X_A)}$$

MIXED FLOW REACTOR

$$\frac{V}{F_{AO}} = \frac{\tau}{C_{AO}} = \frac{\Delta X_A}{-r_A} = \frac{X_A}{-r_A}$$
or
$$\tau = \frac{1}{s} = \frac{V}{v_0} = \frac{VC_o}{F_{AO}} = \frac{C_{AO}X_A}{-r_A}$$

$$\tau = \frac{1}{s} = \frac{V}{v_0} = \frac{VC_o}{F_{AO}} = \frac{C_{AO}X_A}{-r_A}$$

$$\tau = \frac{VC_o}{F_{AO}} = \frac{C_{AO}(X_{Af-}X_{Ai})}{(-r_A)f}$$

$$\tau = \frac{VC_o}{F_{AO}} = \frac{C_{AO}(X_{Af-}X_{Ai})}{(-r_A)f}$$

$$\tau = \frac{V}{v} = \frac{C_{AO}X_A}{-r_A} = \frac{C_{AO}-C_A}{-r_A}$$

PLUG FLOW REACTOR

$$\frac{V}{F_{AO}} = \frac{\tau}{C_{AO}} = \int_{0}^{X_{Af}} \frac{dX_A}{-r_A} \qquad \tau = \frac{V}{v_0} = C_{AO} \int_{0}^{X_{Af}} \frac{dX_A}{-r_A}$$
$$\frac{V}{F_{AO}} = \frac{V}{C_{AOvo}} = \int_{AI}^{X_{Af}} \frac{dX_A}{-r_A} \qquad \tau = \frac{V}{v_0} = C_{AO} \int_{AI}^{X_{Af}} \frac{dX_A}{-r_A}$$
$$\frac{V}{F_{AO}} = \frac{\tau}{c_{AO}} = \int_{0}^{X_{Af}} \frac{dX_A}{-r_A} = -\frac{1}{c_{AO}} \int_{AO}^{X_{Af}} \frac{dC_A}{-r_A}$$
$$\tau = \frac{V}{v_0} = C_{AO} \int_{0}^{X_{AI}} \frac{dX_A}{-r_A} = -\int_{AO}^{X_{Af}} \frac{dC_A}{-r_A}$$
$$X_A = \mathbf{1} - \frac{C_A}{c_{AO}} \text{ and } dX_A = -\frac{dC_A}{c_{AO}}$$
Page 7 of 8

	Plug Flow	Mixed Flow
n = 0 $-r_A = k$	$\frac{k\tau}{C_{Ab}} = X_A$	$\frac{k\tau}{C_{A0}} = X_A$
n = 1 $r_A = kC_A$	$k\tau = (1 + \varepsilon_A) \ln \frac{1}{1 - X_A} - \varepsilon_A X_A$	$k\tau = \frac{X_{\rm A}(1 + \varepsilon_{\rm A} X_{\rm A})}{1 - X_{\rm A}}$
n = 2 $r_A = kC_A^2$	$k\tau C_{A0} = 2\varepsilon_A(1+\varepsilon_A)\ln(1-X_A) + \varepsilon_A^2 X_A + (\varepsilon_A+1)^2 \cdot \frac{X_A}{1-X_A}$	$k\tau C_{A0} = \frac{X_A(1+\varepsilon_A X_A)^2}{(1-X_A)^2}$
any n $r_A = kC_A^n$		$k\tau C_{A0}^{n-1} = \frac{X_A(1 + \varepsilon_A X_A)^n}{(1 - X_A)^n}$
<i>n</i> = 1		
$A \stackrel{1}{\underset{2}{\longrightarrow}} rR$	$\frac{k\tau}{X_{Ae}} = (1 + \varepsilon_A X_{Ae}) \ln \frac{X_{Ae}}{X_{Ae} - X_A} - \varepsilon_A X_A$	$\frac{k\tau}{X_{Ar}} = \frac{X_A(1 + \varepsilon_A X_A)}{X_{Ar} - X_A}$
C _{R0} = 0		
General expression	$\tau = C_{Ab} \int_{0}^{X_{A}} \frac{dX_{A}}{-r_{A}}$	$\tau = \frac{C_{AB}X_A}{-r_A}$

Performance Equations for <i>n</i> th-order Kinewics and $\varepsilon_A = 0$			
	Plug Flow or Batch	Mixed Flow	
$n = 0$ $-r_{A} = k$	$\frac{k\tau}{C_{A0}} = \frac{C_{A0} - C_{A}}{C_{A0}} = X_{A}$	$\frac{k\tau}{C_{\rm A0}} = \frac{C_{\rm A0} - C_{\rm A}}{C_{\rm A0}} = X_{\rm A}$	
$n = 1$ $-r_{\rm A} = kC_{\rm A}$	$k\tau = \ln \frac{C_{A0}}{C_A} = \ln \frac{1}{1 - X_A}$	$k\tau = \frac{C_{\mathrm{A0}} - C_{\mathrm{A}}}{C_{\mathrm{A}}} = \frac{X_{\mathrm{A}}}{1 - X_{\mathrm{A}}}$	
$n = 2$ $-r_{\rm A} = kC_{\rm A}^2$	$k\tau C_{\rm A0} = \frac{C_{\rm A0} - C_{\rm A}}{C_{\rm A}} = \frac{X_{\rm A}}{1 - X_{\rm A}}$	$k\tau = \frac{(C_{A0} - C_A)}{C_A^2} = \frac{X_A}{C_{A0}(1 - X_A)^2}$	
any n $-r_{\rm A} = kC_{\rm A}^n$	$(n-1)C_{A0}^{n-1}k\tau = \left(\frac{C_A}{C_{A0}}\right)^{1-n} - 1 = (1-X_A)^{1-n} - 1$	$k\tau = \frac{C_{A0} - C_A}{C_A^n} = \frac{X_A}{C_{A0}^{n-1}(1 - X_A)^n}$	
n = 1 A $\stackrel{1}{\underset{2}{\longrightarrow}}$ R	$k_1 \tau = \left(1 - \frac{C_{Ae}}{C_{A0}}\right) \ln\left(\frac{C_{A0} - C_{Ae}}{C_A - C_{Ae}}\right) = X_{Ae} \ln\left(\frac{X_{Ae}}{X_{Ae} - X_A}\right)$	$k_{1}\tau = \frac{(C_{A0} - C_{A})(C_{A0} - C_{Ae})}{C_{A0}(C_{A} - C_{Ae})} = \frac{X_{A}X_{Ae}}{X_{Ae} - X_{A}}$	
$\frac{C_{\rm R0} = 0}{\rm General \ rate}$	$\tau = \int_{C_{\rm A}}^{C_{\rm A0}} \frac{dC_{\rm A}}{-r_{\rm A}} = C_{\rm A0} \int_{0}^{X_{\rm Ac}} \frac{dX_{\rm A}}{-r_{\rm A}}$	$\tau = \frac{C_{A0} - C_A}{-r_{Af}} = \frac{C_{A0}X_A}{-r_{Af}}$	