## MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING, SCIENCE AND TECHNOLOGY

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: PRINCIPLES OF CHEMICAL ENGINEERING
CODE: CHEP101
SESSIONAL EXAMINATIONS JUNE 2023

DURATION: 3 HOURS
EXAMINER: MR D NYADENGA


## Section A (Answer All questions)

## QUESTION 1

a) State any $\boldsymbol{t w o}$ base quantities and their respective SI units.
b) The volumetric flow rate $(q)$ over a rectangular weir is given by:

$$
q=0.415\left(L-0.2 h_{0}\right) h_{0} \cdot \sqrt{2.5} \sqrt{2 g}
$$

where $L$ is crest height, $h_{0}$ is the weir head with units of length, $g$ is acceleration due to gravity and all numeric figures are dimensionless.
Determine whether the equation is dimensionally consistent.
c) The density of a fluid is given by the empirical equation:

$$
\rho=70.5 e^{\left(8.27 \times 10^{-7} P\right)}
$$

where $\rho$ is density in $\boldsymbol{l}_{\boldsymbol{b}} / \boldsymbol{f} \boldsymbol{f}^{3}$ and $P$ is pressure in $\boldsymbol{l} \boldsymbol{b}_{f} / \boldsymbol{i n}^{2}$
i. If the equation is dimensionally consistent, determine the units of $\mathbf{7 0 . 5}$ and

$$
\begin{equation*}
8.27 \times 10^{-7} \tag{3}
\end{equation*}
$$

ii. Calculate the density in $\boldsymbol{g} / \mathrm{cm}^{3}$ for a pressure of $9 \times 10^{6} \mathrm{~Pa}$.

## QUESTION 2

a) The volumetric flow rate of $\mathrm{CCl}_{4}\left(\rho=1.595 \mathrm{~g} / \mathrm{cm}^{3}\right)$ in a pipe is $100 \mathrm{in}^{3} / \mathrm{min}$. Calculate the molar flow rate of $\mathrm{CCl}_{4}$ in $\mathrm{lbmol} /$ day .
b) A mixture is $10 \mathrm{~mol} \%$ ethyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right), 75 \mathrm{~mol} \%$ ethyl acetate $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)$ and $15 \mathrm{~mol} \%$ acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$. Calculate the mass fraction of ethyl acetate.
c) The pressure gauge on the steam condenser for a turbine indicates 345.44 in of water vacuum. The barometer reading is 30.4 in of Hg . Calculate the absolute pressure in the steam condenser in $\boldsymbol{k P a}$.
d) 0.4 kgmol of dichloroethane $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}\right)$ are produced when 50 kg of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ are mixed with 135 kg of chlorine $\left(\mathrm{Cl}_{2}\right)$ according to the reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{6}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}+2 \mathrm{HCl}
$$

i. Determine the excess reactant.
ii. Calculate the fraction degree of completion of the reaction.

## Section B (Answer any two questions)

## QUESTION 3

a) Differentiate between wet flue gas analysis and dry flue gas analysis.
b) 400 kg of $\mathrm{C}_{7} \mathrm{H}_{16}$ is supplied for combustion in air (Air contains $21 \mathrm{~mol} \%_{\mathrm{O}_{2}}$ and $79 \mathrm{~mol} \% \mathrm{~N}_{2}$ ). $80 \%$ of the $\mathrm{C}_{7} \mathrm{H}_{16}$ undergoes complete combustion whilst the rest is incompletely combusted. The chemical reactions are as follows:

$$
\begin{aligned}
& \mathrm{C}_{7} \mathrm{H}_{16}+11 \mathrm{O}_{2} \rightarrow 7 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{7} \mathrm{H}_{16}+\frac{15}{2} \mathrm{O}_{2} \rightarrow 7 \mathrm{CO}+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Calculate:
i. the number of moles of $\mathrm{O}_{2}$ supplied.
ii. the number of moles of $\mathrm{N}_{2}$ supplied.
iii. the number of moles of $\mathrm{CO}_{2}$ and CO produced.
iv. the number of moles of $\mathrm{H}_{2} \mathrm{O}$ produced.
v. the mole fraction of CO in the flue gas on a dry basis.

## QUESTION 4

a) Define steady state conditions.
b) Give two differences between a batch process and continuous process.
c) Fresh orange juice with a feed rate of $250 \mathrm{~kg} / \mathrm{h}$ contains $20 \%$ solids and the balance is water. The desired juice concentration is $50 \%$ solids. This is achieved by letting some of the feed stream bypass the evaporator. In the evaporator, $80 \%$ of the water entering is evaporated. Figure 1 shows the whole process.


Figure 1
Determine the flow rates of all the streams in the process.
d) Figure 2 shows a closed-circuit grinding flowsheet for processing minerals.


Figure 2
The feed from the ore bin contains $95 \%$ solids and $5 \%$ moisture (water) by mass. The mass flow rate of the dry ore (solids) in the overflow is $25 \mathrm{t} / \mathrm{h}$. The cyclone feed contains $33 \%$ solids, the cyclone underflow $65 \%$ solids and the
cyclone overflow $15 \%$ solids by mass. Calculate:
i. The mass flow rate of the recycle stream.
ii. The amount of water required to dilute the ball mill discharge.

## QUESTION 5

a) Define the following terms in relation to energy balance:
i. Closed system
ii. Work
iii. Adiabatic process
b) Determine the phase, saturation temperature, specific volume and specific enthalpy of water at $75^{\circ} \mathrm{C}$ and 0.5 bar.
c) A turbine operating at steady state develops 36 MW of power for a steam flow rate of $317466 \mathrm{lb}_{\mathrm{m}} / \mathrm{h}$, dissipating 4 MW of heat in the process. The steam enters at $450{ }^{\circ} \mathrm{C}$ and exits as wet steam at $54^{\circ} \mathrm{C}$ and dryness fraction of $88.7 \%$. Determine the pressure of steam at the entry and exit points. END OF EXAMINATION

