MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING, SCIENCE AND TECHNOLOGY DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: INFORMATION SYSTEMS FOR CHEMICAL ENGINEERS CODE: HCHE 516

SESSIONAL EXAMINATIONS

APRIL 2023
DURATION: 3 HOURS
EXAMINER: L. NYATHI (MISS)

Page 1 of 7

QUESTION 1

a) List five advantages of MATLAB as a tool for solving engineering problems. [5]
b) Explain the use of the following MATLAB commands:
(i) clc
(ii) clear all
c) What is the difference between a vector and a matrix?

QUESTION 2

a) Assuming the following assignments:
$\gg a=\left[\begin{array}{lllllll}3 & 4 & 5 & 6 & 4 & 3 & 2\end{array} 12\right]$;
$\gg b=\left[\begin{array}{lllllll}5 & 3 & 4 ; & 5 & 6 & 2 ; & 3\end{array} 49\right]$;
(i) What will be the result of the following expression?

$$
\begin{equation*}
\gg a(2,:) * b(:, 2) . / 9 .^{\wedge} 1 / 2+b(1,3) / a(3,2) \tag{2}
\end{equation*}
$$

(ii) What is the value of the vector C after the following lines of code:

$$
\begin{align*}
& \gg a(2,:)=[] \\
& \gg C=\text { length }(a) \tag{2}
\end{align*}
$$

b) $A=$ magic (4) gives the following matrix:

16	2	3	13
5	11	10	8
9	7	6	12
4	14	15	1

(i) Write MATLAB code to replace the 2 nd and 3 rd rows of A with 0 s . You must use the zeros function (but only once).
(ii) Write a code to interchange the first and second columns of A.
(iii) Write a code to delete the third row of A
(iv) Write a code to create a matrix R that will contain the elements of A that are lesser than 4 . Write the exact result of the operation.

QUESTION 3

Consider the expression given below:

$$
\sum_{n=1}^{100} \frac{n}{(2 n+3)^{2}}
$$

Use a for loop to evaluate the expression

QUESTION 4

Study the following lines of code and answer the questions that follow:
Rows $=4$
Columns $=5$
Arr $=$ ones (rows, columns)
$\mathbf{i}=1$
while $\mathbf{i}==$ rows
for $\mathbf{j}=$ columns : $-2: 1$

$$
\operatorname{Arr}(\mathbf{i}, \mathbf{j})=\mathbf{i}+\mathbf{j}
$$

end

$$
\mathbf{i}=\mathbf{i}+1
$$

end
fprintf(${ }^{(\% d \backslash n ', \mathbf{j})}$
fprintf(${ }^{\circ} \% \mathrm{~d} \backslash \mathrm{n}$ ', $\operatorname{Arr}($ rows,columns))
a) What is the value of \mathbf{j} printed in the first fprintf statement?
b) How many elements of the array changed as a result of the two loops?
c) What is the value printed in the final fprintf statement?

QUESTION 5

Write a MATLAB script to plot the function:

$$
y=\left\{\begin{array}{lc}
15 \sqrt{4 x}+10 & x \geq 9 \\
10 x+10 & 0 \leq x \leq 9 \\
10 & x<0
\end{array}\right.
$$

For $-5 \leq x \leq 30$.
Ensure there are at least 35 intervals in the range for x.
Your code should replicate Figure 1 below, with the appropriate labels, title and formatting.
plot of x versus y

Figure 1

QUESTION 6

Write a flowchat for a function called VisFunction that takes in a vector, V, and produces a new vector, W, of the same length as V where each element of W is the sum of the corresponding element in V and the previous element of V. Consider the previous element of $V(1)$ to be 0 .

QUESTION 7

Write a MATLAB script that calculates a user's total mobile telephone costs at the end of a month for a flexible post-paid billing system. Assume that the user's service usage information is stored somewhere and is retrievable by the user; and your script will calculate the total cost depending on his/her input.

Use the following algorithm for the calculation:

1) Ask the user if he/she is on a monthly post-paid billing system. If the response is 'yes' then proceed otherwise end the program with the message: "This program is for only post-paid clients".
2) Request the user to put in the number of peak and off peak minute calls he/she made for the month. Use R0.06/second and R0.015/second as rates for peak and off-peak call charges respectively.
2.1) Ask the user if he/she bought any SMS bundles this month. If the response is 'yes,' then,
2.2) Use the menu function to ask the user the type of bundle he/she purchased. Then use a switch case statement to assign the cost per bundle according the rates in Table 1.

YOU MUST USE THE MENU FUNCTION AND THE SWITCH CASE STATEMENT FOR THIS STEP.

Table 1: SMS bundle rates

Cost	Per number of SMS
R10	For 20 SMS
R25	For 50 SMS
R35	For 100 SMS
R50	For 200 SMS
R67.50	For 300 SMS

3.1 Ask the user if he/she used any broadband data. If the response is 'yes', then
3.2 Ask the user how much data he/she used for the month and calculate the total cost using the charge per Mega byte (MB) given in Table 2. You can use any type of selection structure for this step.

Table 2: Broadband data rates

Total data used	Cost in Rand per MB
$<=\mathbf{8 M B}$	1.16
$<=\mathbf{3 0 M B}$	0.93
$<=\mathbf{1 1 0 M B}$	0.80
$<=\mathbf{1 7 5 M B}$	0.68
$<=\mathbf{3 0 0 M B}$	0.46
$>\mathbf{3 0 0 M B}$	0.30

4. Add up all of the user's costs (use the variable: TotalCosts) and output the result using the following statement:
fprintf('Your total cost for this month is R $\% 5.2 \mathrm{fln}$ ', TotalCosts);
Comment your work - marks are awarded for effectiveness of comments.
Present your work neatly - marks are awarded for the clarity and effectiveness of presentation.

QUESTION 8

A cylindrical tank is full of water. A small hole is drilled in the bottom of the tank so that the water leaks out. The mathematical model of the system is the differential equation which shows the relationship between the height of the liquid (h) and the output flowrate $\left(q_{o}\right)$. Surface area of the bottom of the cylindrical tank is $A=0.4 \mathrm{~m}^{2}$. Velocity of the liquid coming out through the hole is v and the area of the hole $a=$ $0.001 \mathrm{~m}^{2}$.
i) Form a differential equation for the rate at which the height of the water in the tank is changing.
ii) Write a MATLAB code to solve the differential equation and find the ultimate liquid level (h) of the tank.

QUESTION 9

a) Write a code for a function called vecSFunction that takes in a vector, C, and produces a new vector, D, that contains all the elements in vector C that are smaller or equal to 45 . The numbers should be in the same order as they were in vector C. Please note that you do not know the length of vector C i.e., the function should accept a vector of any length.
b) Write a script that calls the function vecSFunction where the input vector is

$$
\mathrm{C}=[452847264257245743257335233430-65-343]
$$

c) What will be the output of the script?

