

# MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

### FACULTY OF ENGINEERING, SCIENCE AND TECHNOLOGY DEPARTMENT OF CHEMICAL AND PROCESSING ENGINEERING

SOLID FLUID SYSTEMS II

CODE: CHEP 323

SESSIONAL EXAMINATIONS

APRIL 2023

DURATION: 3 HOURS

EXAMINER: MR W. CHIPANGURA

### **INSTRUCTIONS**

- 1. Answer any four questions.
- 2. Each question carries 25 marks.
- 3. Start each question on a fresh page
- 4. Show all your steps clearly in your calculations.
- 5. Use of scientific calculators is permitted.

#### **QUESTION 1**

| (a) | Distinguish between mixing and agitation                                                        | [4]  |
|-----|-------------------------------------------------------------------------------------------------|------|
| (b) | Describe any three types of impellers in basic stirred tank design                              | [6]  |
| (c) | Define mixing time and explain how it is measured                                               | [5]  |
| (d) | A fermentation broth with viscosity 10 <sup>-2</sup> Pas and density 1000 kg m <sup>-3</sup> is |      |
|     | agitated in a 2.7 m <sup>3</sup> baffled tank using a Rushton turbine with diameter 0.5         |      |
|     | m and stirred speed 1 s <sup>-1</sup> . Estimate the mixing time.                               | [3]  |
| (e) | With the aid of a labelled diagram, explain the correlation between p                           | ower |
|     | number and Reynolds number for Rushton turbine without sparging                                 | [7]  |

### **QUESTION 2**

| (a) | Describe the basic Fluidized Bed Components. | [6] |
|-----|----------------------------------------------|-----|
|-----|----------------------------------------------|-----|

- (b) State any four properties of fluidized beds [4]
- (c) Give any four industrial applications of fluidised beds [4]
- (d) A packed bed of solids of density 2000 kg/m<sup>3</sup> occupies a depth of 0.6 m in a cylindrical vessel of inside diameter 0.1 m. The mass of solids in the bed is 5 kg and the surface-volume mean diameter of the particles is 300 μm. Water (density 1000 kg/m<sup>3</sup> and viscosity 0.001 Pas) flows upwards through the bed.
  - i. What is the voidage of the packed bed? [3]
  - ii. Use a force balance over the bed to determine the bed pressure drop when fluidised. [4]
  - iii. Assuming that the packed bed voidage is the same as the voidage at incipient fluidisation, use the Ergun Equation to determine the minimum fluidisation velocity. [4]

*Ergun equation*: 
$$\frac{(-\Delta P)}{H} = 150 \frac{(1-\varepsilon)^2}{\varepsilon^3} \frac{\mu u}{d_{sv}^2} + 1.75 \frac{(1-\varepsilon)}{\varepsilon^3} \frac{\rho_f u^2}{d_{sv}}$$

### **QUESTION 3**

| a) What is an electrostatic precipitator (ESP)?                                 | [1]      |
|---------------------------------------------------------------------------------|----------|
| ) List any four distinguishing features that are used to classify electrostatic |          |
| precipitators.                                                                  | [4]      |
| c) With the aid of a clearly labelled diagram describe the operating p          | rinciple |
| of a plate electrostatic precipitators.                                         | [4]      |
| d) The common operational problems for ESPs are resistivity, particle           | e size,  |
| dust accumulation and wire breakage. Explain clearly how each affect the        |          |
| efficient operation of ESP and suggest corrective actions.                      | [12]     |
| e) What are the advantages and disadvantages of ESPs?                           | [4]      |

## **QUESTION 4**

| a) | What is Filtration?                                                 | [2]   |
|----|---------------------------------------------------------------------|-------|
| b) | Describe the operating mechanism for slow sand filters.             | [4]   |
| c) | With the aid of clearly labelled diagrams, distinguish between cake | and   |
|    | deep bed filtration.                                                | [6]   |
| d) | Describe the various factors to be considered when selecting filtra | ntion |
|    | equipment.                                                          | [9]   |
| e) | Describe the basic requirements for filtration.                     | [4]   |

### **QUESTION 5**

| a) Explain centrifugation.                                            | [2]      |
|-----------------------------------------------------------------------|----------|
| b) Distinguish the types of centrifuges based on rotor design         | [6]      |
| c) Clearly differentiate, sedimentation, coagulation and flocculation | [3]      |
| d) Explain how coagulation and flocculation is applied in water tr    | reatment |
| operations.                                                           | [6]      |
| e) With the aid of a diagram, describe the operation of a cyclone.    | [4]      |
|                                                                       |          |

Page 3 of 4

f) State 4 industrial applications of cyclones.

### **END OF PAPER**

[4]