

MANICALAND STATE UNIVERSITY

OF APPLIED SCIENCES

FACULTY OF ENGINEERING, SCIENCE AND TECHNOLOGY

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: SEPARATION PROCESSES 1

CODE: CHEP 315

SESSIONAL EXAMINATIONS APRIL 2023

DURATION: 3 HOURS

EXAMINER: MISS N.T. MADZIWA

INSTRUCTIONS

- 1. Answer ALL questions
- 2. Start a new question on a fresh page
- 3. Total marks 100
- 4. Formulae sheet is given at the end of the paper.

Additional material(s): Calculator

Page 1 of 5

QUESTION 1				
a)	Explain what is meant by separation processes in relation to chemical			
	engineering operations.	[2]		
b)	State the applications of these two membrane processes:			
	i. Ultrafiltration			
	ii. Nanofiltration	[4]		
c)	With the aid of well-labelled diagrams, explain the principle of reverse			
	osmosis.	[8]		
d)	Explain these two types of membrane modules using well-labelled diagram	ns,.		
	i. Spiral-Wound Module ii. Tubular Module	[6]		
	QUESTION 2			
a)	Explain the process of electrodialysis using Na ₂ SO ₄ as an electrolyte solut	ion		
	using an appropriate diagram	[8]		

- b) Describe the parameters influencing the efficiency of electrodialysis. [6]
- c) Explain the meaning of these terms as used in thermodynamics
 - i. Surroundings
 - ii. Entropy
 - iii. Closed system

d) Explain flow work and shaft work.

iv. Gibbs energy

[4] [2]

QUESTION 3

a) With the aid of diagrams, explain the process of crystallization and its	
applications in separation processes.	[6]
b) Explain the types of flow patterns as used in process mixing using	
appropriate diagrams	[6]
Page 2 of 5	

- c) With the aid of diagrams, explain these **two** mechanisms of equipment for solid mixing.
 - *i.* Paddle mixer
 - *ii.* Tumbler mixer

QUESTION 4

a) What is the yield of sodium acetate crystals (CH₃COONa.₃H₂O) obtainable from a vacuum crystalliser operating at 1.33 kN/m² when it is supplied with 0.56 kg/s of a 40 per cent aqueous solution of the salt at 353 K? The boiling point elevation of the solution is 11.5 deg K. [6]

Data:

Heat of crystallisation, $q = 144 \text{ kJ/kg}$ trihydrate		
Heat capacity of the solution, $C_p = 3.5 \text{ kJ/kg deg K}$		
Latent heat of water at 1.33 kN/m ² , λ =2.46 MJ/kg		
Boiling point of water at 1.33 $kN/m^2 = 290.7K$		
Solubility of sodium acetate at 290.7 K, $c_2 = 0.539$ kg/kg water.		
b) Describe the two types of primary nucleation.		
c) Explain these two types of the mechanisms of blending.		
i. Convective Mixing (Macro mixing)		
ii. Diffusion mixing (Micro mixing)	[6]	
d) State the limitations of reverse osmosis (RO).		

QUESTION 5

a) (i)How much energy is available for sustaining muscular and nervous activity from the combustion of 1.00 mol of glucose molecules under standard conditions at 37 °C (blood temperature)? [2]

[8]

(ii) Given the standard entropy of reaction as +182.4 JK⁻¹ mol⁻¹. Outline the steps taken to calculate the energy available.
[2]

- b) Given that the solubility of sodium sulphate at 283 K is 9 kg anhydrous salt/100 kg water and the deposited crystals will consist of the deca-hydrate (molecular mass = 322 kg/kmol). It may be assumed that 2 per cent of the water will be lost by evaporation during cooling). Calculate is the theoretical yield of crystals which may be obtained by cooling a solution containing 1500 kg of sodium sulphate (molecular mass =142 kg/kmol) in 5000 kg water to 283 K? [6]
- c) State the factors affecting mixing. [4]d) State the advantages of using tumbling mixers in solid mixing. [4]

[2]

e) What is blending?

END OF EXAMINATION

LIST OF FORMULAE

Crystal yield initial solvent balance: $w_1 = w_2 + y \frac{R-1}{R} + w_1 E$ Crystal yield solute balance: $w_1 c_1 = w_2 c_2 + y/R$ Yield for aqueous solutions: $y = Rw_1 \frac{c_{1-c_2}(1-E)}{1-c_2(R-1)}$ Quantity from heat balance: $E = \frac{qR(c_1-c_2)+C_p(T_1-T_2)(1+c_1)[1-c_2(R-1)]}{\lambda[1-c_2(R-1)]-qRc_2}$ Power: $\frac{Power_{gassed}}{Power_{ungassed}} = 0.1(\frac{Q}{NV_L})^{-0.25}(\frac{N^2d^4}{gBV_L^{2/3}})^{-0.20}$