MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING, SCIENCE AND TECHNOLOGY DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: REACTOR DESIGN AND ANALYSIS III CODE: CHEP 314

SESSIONAL EXAMINATIONS
APRIL 2023
DURATION: 3 HOURS
EXAMINER: MR C.K. SIMENDE

Page $\mathbf{1}$ of 5

QUESTION 1

a) It is desired to produce 200×10^{6} pounds per year of ethylene glycol(EG). The reactor is to be operated isothermally. A $1 \mathrm{lb} \mathrm{mol} / \mathrm{ft}^{3}$ solution of ethylene oxide (EO) in water is fed to the reactor together with an equal volumetric solution of water containing $0.9 \mathrm{wt} \%$ of the catalyst $\mathrm{H}_{2} \mathrm{SO}_{4}$. The specific reaction rate constant is $0.311 \mathrm{~min}^{-1}$. The reaction proceeds as shown in Scheme 1.

Scheme 1: Single CSTR

Additional information

Molecular Weight of EG $=62$
Molecular Weight of EO $=58$
i) If 80% conversion is to be achieved, determine the necessary CSTR volume.
ii) If two 800 -gal reactors were arranged in parallel, what is the corresponding conversion?
iii) If two 800 -gal reactors were arranged in series, what is the corresponding conversion?

QUESTION 2

a) Describe the steps of a catalytic reaction using the aid of fully labeled diagrams.
b) Equation (1) is a catalytic reaction to improve the octane number of gasoline:

$$
\begin{equation*}
\mathrm{n}-\text { pentane } \underset{\substack{75 \% \mathrm{Pt} \\ \text { on } \mathrm{Al}_{2} \mathrm{O}_{3}}}{\Longrightarrow} \mathrm{i}-\text { pentane } \tag{1}
\end{equation*}
$$

The steps in this reaction are as follows:

$$
\mathrm{n} \text { - pentene } \stackrel{-\mathrm{H}_{2}\left(\mathrm{P}_{\mathrm{t}}\right)}{\Longleftrightarrow} \mathrm{n} \text { - pentene } \underset{\mathrm{Al}_{2} \mathrm{O}_{3}}{\Longleftrightarrow} \mathrm{i}-\text { pentene } \stackrel{+\mathrm{H}_{2}\left(\mathrm{P}_{\mathrm{t}}\right)}{\Longleftrightarrow} \mathrm{i} \text { - pentane }
$$

Show that:

$$
\begin{equation*}
-\mathrm{r}_{\mathrm{N}}^{\prime}=\frac{\mathrm{k}_{\mathrm{s}} \mathrm{~K}_{\mathrm{N}} \mathrm{C}_{\mathrm{T}}\left[\mathrm{P}_{\mathrm{N}}-\frac{\mathrm{P}_{\mathrm{L}}}{\mathrm{~K}_{\mathrm{r}}}\right]}{1+\mathrm{K}_{\mathrm{N}} \mathrm{P}_{\mathrm{N}}+\mathrm{K}_{2} \mathrm{P}_{2}} \tag{15}
\end{equation*}
$$

c) Write down the reaction rate equation for the following surface mechanisms:
i) Single site
ii) Dual site
iii) Eley-Rideal

QUESTION 3

a) Describe and explain the three main types of catalyst deactivation.
b) Outline the mechanism of catalysts deactivation.
c) The first-order isomerization $A \rightarrow B$ is being carried out isothermally in a batch reactor on a catalyst that is decaying as a result of aging. Derive an equation for conversion as a function of time.

QUESTION 4

a) Distinguish between physical adsorption and chemical adsorption.
b) The result of kinetic runs on the reaction $\mathrm{A} \rightarrow \mathrm{R}$ made in an experimental packed bed reactor using a fixed feed rate $\mathrm{F}_{\mathrm{Ao}}=10 \mathrm{kmol} / \mathrm{h}$ are as shown in table 1:

Table 1

W, kg catalyst	1	2	3	4	5	6	7
X_{A}	0.12	0.20	0.27	0.33	0.37	0.41	0.44

i) Find the reaction rate at 40% conversion.
ii) For a feed rate of $400 \mathrm{kmol} / \mathrm{h}$ to large scale packed bed reactor find the amount of catalyst needed for 40% conversion.
iii) Find the amount of catalyst that would be needed in part (II) if the reactor employed a very large recycle of product stream.

QUESTION 5

a) Describe and explain the contact (adsorption) theory using the hydrogenation of ethylene in the presence of a nickel catalyst as an example.
b) Using the results in Table 2 plot the BET isotherm and hence find S_{g} using the BET equation.

Table 2: Equilibrium data

$\mathrm{P}(\mathrm{kP})$	0.8	3.3	18.7	30.7	38.0	42.7	57.3	67.3
V(cc at STP/gm)	6.1	12.7	17.0	19.7	21.5	23.0	27.7	33.5

c) Derive the BET adsorption isotherm equation with the help of following equilibrium equations:

$$
\begin{gathered}
M+S \rightleftharpoons M S \\
M+M S \rightleftharpoons M_{2} S \\
M+M_{2} S \rightleftharpoons M_{3} S \\
\ldots \ldots \ldots \ldots \ldots \ldots \\
M+M_{n-1} S \rightleftharpoons M_{n} S
\end{gathered}
$$

Where M is the unadsorbed gas molecules, S is the active site on the adsorbent surface, $M S$ is the single complex formed, $M_{2} S$ is the double complex formed, and so on.

