MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING, SCIENCE AND TECHNOLOGY DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: CHEMICAL ENGINEERING THERMODYNAMICS II CODE: CHEP212

SESSIONAL EXAMINATIONS APRIL 2023

DURATION: 3 HOURS

EXAMINER: MR D NYADENGA

QUESTION 1

a) Define partial molar property of species \boldsymbol{i} in solution. Also state the formula that represent the partial molar property of species i in solution.
b) A stream of methane gas flowing at the rate of $16 \mathrm{~kg} / \mathrm{s}$ and a stream of ethane gas flowing at the rate of $15 \mathrm{~kg} / \mathrm{s}$ are mixed in a steady flow process. The temperature of the whole system is constant at $25^{\circ} \mathrm{C}$. Assuming the gases to be ideal, calculate the rate of change in total Gibbs free energy.
c) Show that $\gamma_{i}=\widehat{\Phi}_{i} / \Phi_{i}$
d) The excess enthalpy (heat of mixing) of a liquid mixture of species 1 and 2 at fixed T and P is given by:

$$
\begin{equation*}
H^{E}=x_{1} x_{2}\left(40 x_{1}+20 x_{2}\right) \tag{9}
\end{equation*}
$$

i. Determine the expressions for \bar{H}_{1}^{E} and $\bar{H}_{2}{ }^{E}$ as functions of x_{1}.
ii. Show that the expressions obtained in part a) satisfy the Gibbs/Duhem equation.

QUESTION 2

a) Starting from $\bar{H}_{i}^{i d}=H_{i}$, show that $H^{E}=\Delta H$ where H^{E} is the excess solution enthalpy and ΔH is the enthalpy change or heat of mixing.
b) $\mathrm{LiCl} \cdot 3 \mathrm{H}_{2} \mathrm{O}(s)$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are mixed isothermally at $25^{\circ} \mathrm{C}$ to form a solution containing 8 mol of $\mathrm{H}_{2} \mathrm{O}$ for each mole of LiCl . Calculate the heat effect per mole of solution. Data for standard enthalpy changes of formation at 298 K is:

Chemical component
$\mathrm{LiCl} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \quad-1311300 \mathrm{~J} / \mathrm{mol}$ of LiCl
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
LiCl in $8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Enthalpy change of formation

- $285830 \mathrm{~J} / \mathrm{mol}$ of $\mathrm{H}_{2} \mathrm{O}$
- $440529 \mathrm{~J} / \mathrm{mol}$ of LiCl
c) A $150 \mathrm{lb}_{\mathrm{m}}$ batch of $30 \mathrm{wt} \% \mathrm{NaOH}$ solution in water at $70^{\circ} \mathrm{F}$ and atmospheric pressure is heated in an insulated tank by injection of live steam drawn through a valve from a line containing wet steam $(x=0.4)$ at 1.3 bar. The process is stopped when the NaOH solution reaches a concentration of $25 \mathrm{wt} \%$. Determine the temperature of this final solution in ${ }^{\circ} \mathrm{F}$. The $H-x$ graph for $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}$ system is attached at the end of the question paper.

QUESTION 3

a) State two major assumptions that reduce VLE calculations to Raoult's law. [2]
b) Why does a mixture of ammonia and n-octane not obey Raoult's law?
c) Sketch the P vs x, y phase diagram at constant T of a binary solution that obeys Raoult's law, where species 1 is the more volatile component, labelling all the regions, curves and limiting points.
d) Show that when y_{i} is unknown Raoult's law can be expressed as: $P=\sum_{i} x_{i} P_{i}^{\text {sat }}$
e) A system of n-heptane (1)/cyclohexane (2) is at $T=70{ }^{\circ} \mathrm{C}$ and $x_{I}=0.65$. Assuming that Raoult's law applies, determine the pressure of the system and y_{l}. The saturation pressures are calculated using the Antoine Equation. [10]

QUESTION 4

a) With the aid of a diagram, describe a reverse osmosis operation.
b) A concentrated binary solution containing mostly species 2 (but $x_{2} \neq 1$) is in equilibrium with a vapour phase containing both species 1 and 2 . The pressure of this two-phase system is 2.5 bar; the temperature is $25^{\circ} \mathrm{C}$. Determine good estimates of x_{1} and y_{1} given that $H_{l}=550$ bar and $\mathrm{P}_{2}{ }^{\text {sat }}=0.03166$ bar.
c) A binary system of species 1 and 2 consists of vapour and liquid phases in
equilibrium at temperature T, for which:

- $\ln \gamma_{1}=1.8 x_{2}{ }^{2}$
$\ln \gamma_{2}=1.8 x_{1}{ }^{2}$
- $\mathrm{P}_{1}{ }^{\text {sat }}=1.24 \mathrm{bar}$
$\mathrm{P}_{2}{ }^{\text {sat }}=0.89 \mathrm{bar}$
Assuming that the modified Raoult's law applies,
i. Show that an azeotrope exists for the system.
ii. Determine the azeotropic composition at T.

QUESTION 5

The following reaction of ideal gases reaches equilibrium at 625 K and 1 bar:

$$
\mathrm{C}_{3} \mathrm{H}_{8_{(g)}} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{CH}_{4}(\mathrm{~g}) \quad \Delta H=+v e
$$

K at 625 K is 1.5236 . Initially there are 3 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ and 1 mole of CH_{4}.
a) Calculate the equilibrium composition of the system.
b) If the pressure is reduced to 0.6 bar and temperature is maintained at 625 K , determine the new equilibrium composition.
c) Explain the effect on the equilibrium composition of decreasing the temperature of the system to 400 K whilst maintaining pressure at 1 bar .[4]
d) If $N_{2}(\mathrm{~g})$ is added to the system whilst $T=625 \mathrm{~K}$ and $P=1$ bar, how is K affected?

Note: $\prod_{i}\left(y_{i}\right)^{v_{i}}=K\left(\frac{P}{P^{o}}\right)^{-v}$

END OF EXAMINATION

Page 5 of 5

