

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING, SCIENCE AND TECHNOLOGY

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: CHEMICAL ENGINEERING THERMODYNAMICS

CODE: CHEP 121

SESSIONAL EXAMINATIONS
APRIL 2023

DURATION: 3 HOURS

EXAMINER: MRS C. MUHEZWA

INSTRUCTIONS

- 1. Answer All questions.
- 2. Start a new question on a fresh page
- 3. Total marks 100

Additional material(s): Calculator, Steam Tables,

QUESTION 1

- a. Explain the meaning of the following terms:
 - i. System,
 - ii. Closed system,
 - iii. Extensive property,
 - iv. Internal energy.

[4]

[1]

b. State the first law of thermodynamics?

c. 1.5 kg of water was vaporized at a constant temperature of 100 °C and constant pressure of 101.33 kPa. The specific volumes of liquid water and water vapor at these conditions are 0.00104 and 1.475 m³·kg⁻¹, respectively. For this change, heat in the amount of 4750.7 kJ is added to the water. Determine

- i. Internal Energy Change (ΔU),
- ii. Enthalpy Change (ΔH) For The System. [5]
- d. One mole of N_2 gas is contained at 273 K and a pressure of 1atm. The addition of 3000 J of heat to the gas at constant pressure causes 832 J of work to be done during the expansion. Determine
 - i. The final state of the gas [6]
 - ii. The values of internal energy change (δu) and enthalpy change (δh) for the change of state[5]
 - iii. The values of c_v and c_p for nitrogen (n_2) . [4]

Assume that nitrogen behave as an ideal gas and that the above change of state is conducted reversibly

QUESTION 2

- a. Explain the following terms:
 - i. Adiabatic change?

ii. Isobaric change? [2]

b. A gas in a piston–cylinder assembly undergoes an expansion process for which the relationship between pressure and volume is given by the equation $PV^n = constant$. The initial pressure is 3 bar, the initial volume is 0.1 m³, and the final volume is 0.2 m³. Determine the work for the process, in kJ, if

i.
$$n = 1.0$$

ii.
$$n = 0$$
.

- c. Draw separate PV graphs to represent the two processes in (b) above and show on them, the work done by the gas in each case [4]
- d. Explain the meaning of the term *entropy*. [1]
- e. Choose the member with the higher entropy in each of the following pairs, and justify your choice assuming constant temperature for (i) and (ii)
 - i. 1 mol of KBr(s) or 1 mol of KBr(aq)
 - ii. 3 mol of $O_2(g)$ or 2 mol of $O_3(g)$
 - iii. ice at -2° C or at -10° C [6]
- f. Explain the significance of the Gibb's free energy. [2]
- g. What is the effect of increasing entropy on the Gibbs free energy? [1]

QUESTION 3

- a. Differentiate between dry and wet saturated steam. [2]
- b. Describe the steps that make up the cycle of any Carnot engine [4]
- c. A closed system containing steam undergoes a reversible constant pressure process during which 400 kJ/kg of heat transfer takes place. Initially the

steam has a dryness fraction, x, of 1.0 and a temperature of 365.7 0 C. Using the steam tables, and using linear interpolation where necessary, determine:

- i. The specific enthalpy, specific internal energy and specific volume at the beginning of the process. [4]
- ii. The specific enthalpy, temperature and specific internal energy of the steam at the end of the process. [10]
- iii. The specific work transfer. [3]
- d. Heat in the amount of 7.5 kJ is added to a closed system while its internal energy decreases by 12 kJ. How much energy is transferred as work? [2]

QUESTION 4

- a. State Second law of thermodynamics
- b. Outline two ways in which the Rankine cycle differs from the Carnot (power) cycle.

[2]

c. Power is generated in a cyclic process in which steam generated in a boiler is expanded in an adiabatic turbine to produce work. The processes that occur as the working fluid flows around the cycle are represented by lines on the *TS* diagram in **Fig. 1**.

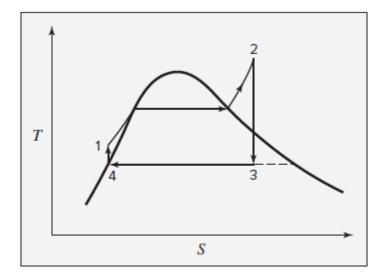


Fig. 1: Rankine Cycle on a TS diagram

i.	Describe what happens between point 1 and 2.	[3]
ii.	Draw a similar TS diagram and represent an ordinary Carnot cycle.	
		[2]
A ref	frigerator works by steadily circulating a refrigerant at low temperatu	re
throu	igh passages in the walls of the freezer compartment. The rate of hear	t
trans	fer from the freezer compartment to a refrigerant is 8000 kJ/h and the	3
powe	er input required to operate the refrigerator is 3200 kJ/h.	
i.	Determine the coefficient of performance of the refrigerator.	[3]
ii.	The refrigerator now maintains the freezer compartment at -5 °C with	hen
	the air surrounding the refrigerator is at 22 °C through a reversible	
	refrigeration cycle operating between the two heat reservoirs.	
	Determine the new coefficient of performance of the refrigerator.	[4]
Give	one examples of large-scale commercial process requiring refrigerate	tion
		[1]
Outli	ine the factors to be considered when choosing a refrigerant.	[4]
Gibb	s Phase rule states that a heterogeneous system in equilibrium is not	
affec	eted by gravity or by electrical and magnetic forces, but by the number	r of
degre	ees of freedom.	
i.	Explain what is meant by number of degrees of freedom	[2]
ii.	A Water system consists of solid, liquid and vapor. Determine the	

END OF EXAMINATION

[2]

number of degrees of freedom for the system

d.

e.

f.

g.