MANICALAND STATE UNIVERSITY OF

APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES \& TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

MODULE: MATHEMATICAL FOUNDATION TO COMPUTER SCIENCE

CODE: BCOS 115

SESSIONAL EXAMINATIONS

APRIL 2024

DURATION: 3 HOURS
EXAMINER: D. MHINI

INSTRUCTIONS

1. Answer All questions in Section A
2. Answer any three questions in Section B.
3. Start a new question on a fresh page
4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator.

SECTION A

(Answer ALL questions from this Section) [40]

A1 (a) List four situations from everyday life in which graphs arise naturally.
(b) Draw the graphs:
(i) K_{8};
(ii) C_{9};
(iii) $K_{4,4}$;
(iv) $K_{1,8}$.
(c) Define and draw an Eulerian digraph.

A2 (a) Construct a circuit for each Boolean Polynomial
(i) $(A \vee B) \wedge\left[A^{\prime} \vee\left(C \wedge B^{\prime}\right)\right]$
(ii) $\left[A^{\prime} \wedge(C \wedge B) \vee C\right] \wedge\left[D \vee\left(A^{\prime} \wedge B\right)\right]$
(b) Prove that $(a+b)^{\prime}=a^{\prime} * b^{\prime}$
[2, 4, 4]
A3. Define the following structures:
(a) Boolean Algebra;
(b) Digraph;
(c) Critical path;
(d) Binary operation.
[5, 2, 2, 1]

A4. (a) Prove that $\sqrt{2}$ is irrational.
(b) State the absorption law of sets.
(c) How many committees of 4 members can be formed from 9 people?
(d) Which of the following sets are different? $\varnothing ;\{0\} ;\{\varnothing\}$

SECTION B

(Answer any THREE questions from this Section) [60]
B5. (a)State the Principal of duality and find the dual of

$$
(A \cap B) \cup\left(A \cap B^{\prime}\right)
$$

(b) Show that the Petersen graph is orientable.
(c) Draw Venn diagram to represent the following:
(i) $A-B$;
(ii) $(A \cap B) \cup(A \cap C)$.
[4, 10, 3, 3]
B6 (a) Prove that $\left(A_{1}-A_{2}\right) \cap\left(A_{1}-A_{3}\right)=A_{1}-\left(A_{2} \cup A_{3}\right)$ where A_{1}, A_{2} and A_{3} are any sets.
(b) Define a relation.
(c) Prove De Morgan's laws

$$
\begin{aligned}
& (A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} ; \\
& (A \cap B)^{\prime}=A^{\prime} \cup B^{\prime} .
\end{aligned}
$$

(d) Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by;

$$
f(z)=\left\{\begin{array}{lc}
3 z-1 ; & \text { if } z>3 ; \\
z^{2}+y ; & \text { if } 2 \leq z \leq 3 ; \\
2 z+3 ; & \text { if } z<-2 .
\end{array}\right.
$$

Find:
(i) $f(2)$;
(ii) $f(4)$;
(iii) $f(-1)$;
(iii) $f(-3)$.
(e).Let $A=\{1,2\}$ construct that set $\rho(A) \times A$ where $\rho(A)$ is the power set of A .
$[5,1,6,4,4]$
B7 (i) Draw the graph G corresponding to each adjacency matrix.

$$
\begin{aligned}
& \text { (a) } A=\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right] . \\
& \text { (b) } A=\left[\begin{array}{llll}
1 & 3 & 0 & 0 \\
3 & 0 & 1 & 1 \\
0 & 1 & 2 & 2 \\
0 & 1 & 2 & 0
\end{array}\right]
\end{aligned}
$$

(ii) Table 1 shows a list of activities required for a new IT product launch.

Table 1.

ACTIVITY	DURATION(weeks)	IMMEDIATE PREDECESSORS
A	6	-
B	3	-
C	4	-
D	4	C
E	9	$\mathrm{~A}, \mathrm{~B}, \mathrm{D}$
F	10	$\mathrm{~A}, \mathrm{~B}, \mathrm{D}$
G	15	C
H	5	E, F
I		

(a) Draw the network diagram for this project.
(b) What is the critical path and the minimum time for completion of the project?

B8 (a) (i) Define a function.
(ii) State the principle of duality.
(b) Prove that $p \rightarrow(q \wedge r) \equiv(p \longrightarrow q) \wedge(p \longrightarrow r)$ is logically equivalent.
(i) Simplfy $\quad \frac{(n+2)!}{n}$
(ii) Prove
$\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r}$
(c) Construct a spanning tree of the following graph G

Fig 1:
$[1,1,5,3,5,5]$

END OF EXAMINATION PAPER

