

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES & TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

MODULE: MATHEMATICAL FOUNDATION TO COMPUTER

SCIENCE

CODE: BCOS 115

SESSIONAL EXAMINATIONS APRIL 2024

DURATION: 3 HOURS

EXAMINER: D. MHINI

INSTRUCTIONS

- 1. Answer All questions in Section A
- 2. Answer any three questions in Section B.
- 3. Start a new question on a fresh page
- 4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator.

SECTION A

(Answer ALL questions from this Section) [40]

A1	(a) List four situations from everyday life in which graphs arise naturally.			
	(b) Draw the graphs:			
	(i) <i>K</i> ₈ ;			
	(ii) <i>C</i> ₉ ;			
	(iii) <i>K</i> _{4,4;}			
(iv) $K_{1,8}$.				
	(c) Define and draw an Eulerian digraph.	[4, 4, 2]		
A2 (a) Construct a circuit for each Boolean Polynomial (i) $(A \lor B) \land [A' \lor (C \land B')]$ (ii) $[A' \land (C \land B) \lor C] \land [D \lor (A' \land B)]$ (b) Prove that $(a + b)' = a' * b'$				
		[2, 4, 4]		
A3.]	Define the following structures:			
	(a) Boolean Algebra;			
	(b) Digraph;			
	(c) Critical path;			
	(d) Binary operation.			
		[5, 2, 2, 1]		
A4. (a) Prove that $\sqrt{2}$ is irrational.				
(b) State the absorption law of sets.				
(c) How many committees of 4 members can be formed from 9 people?				
	(d) Which of the following sets are different? \emptyset ; {0}; { \emptyset }	[3, 2, 3, 2]		
	Page 2 of 6			

SECTION B

(Answer any THREE questions from this Section) [60]

B5. (a)State the Principal of duality and find the dual of

 $(A \cap B) \cup (A \cap B').$

- (b) Show that the Petersen graph is orientable.
- (c) Draw Venn diagram to represent the following:
- (i) A B;
- (ii) $(A \cap B) \cup (A \cap C)$.

[4, 10, 3, 3]

- **B6** (a) Prove that $(A_1 A_2) \cap (A_1 A_3) = A_1 (A_2 \cup A_3)$ where A_1, A_2 and A_3 are any sets.
 - (b) Define a relation.
 - (c) Prove De Morgan's laws

$$(A \cup B)' = A' \cap B'$$
$$(A \cap B)' = A' \cup B'.$$

(d) Let the function $f \colon \mathbb{R} \to \mathbb{R}$ be defined by;

$$f(z) = \begin{cases} 3z - 1; & \text{if } z > 3; \\ z^2 + y; & \text{if } 2 \le z \le 3; \\ 2z + 3; & \text{if } z < -2. \end{cases}$$

;

Find:

(i) f(2);

(ii) f(4);

- (iii) f(-1);
- (iii) f(-3).
- (e).Let A = {1,2} construct that set ρ(A) × A where ρ(A) is the power set of A.

B7 (i) Draw the graph *G* corresponding to each adjacency matrix.

$$(a) A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$
$$(b) A = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 3 & 0 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 0 \end{bmatrix}$$

(ii) Table 1 shows a list of activities required for a new IT product launch.

ACTIVITY	DURATION(weeks)	IMMEDIATE PREDECESSORS
А	6	-
В	3	-
С	4	-
D	4	С
Е	9	A
F	8	A, B ,D
G	10	A, B, D
Н	15	С
Ι	5	E, F

Table 1.

- (a) Draw the network diagram for this project.
- (b) What is the critical path and the minimum time for completion of the project?

[5, 5, 8, 2]

B8 (a) (i) Define a function.

(ii) State the principle of duality.

- (b) Prove that $p \to (q \land r) \equiv (p \to q) \land (p \to r)$ is logically equivalent.
- (i) Simplfy $\frac{(n+2)!}{n}$
- (ii) Prove $\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$
- (c) Construct a spanning tree of the following graph G

Fig 1:

[1, 1, 5, 3, 5, 5]

END OF EXAMINATION PAPER