

# MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

# FACULTY OF ENGINEERING, APPLIED SCIENCES & TECHNOLOGY

DEPARTMENT OF APPLIED STATISTICS

MODULE: INTRODUCTION TO STATISTICS

CODE: ASTA 101

SESSIONAL EXAMINATIONS

**DURATION: 3 HOURS** 

EXAMINER: MR M. HAZVINANDAWA

#### INSTRUCTIONS

- 1. Answer ALL questions from Section A
- 2. Answer any **three** questions from Section B
- 3. Total Marks: 100

#### REQUIREMENTS

*Statistical tables; Graph paper Non-programmable scientific calculator* 

Page 1 of 4

### **SECTION A: 40 MARKS** Answer **All** Questions in this Section

A1 Define the following terms as used in Statistics:

- a) quantitative data;
- b) parameter;
- c) sample;
- d) qualitative data.

 $[2,\,2,\,2,\,2]$ 

- A2 A student finds that the average number of amoebas in 10 ml of pond water from a particular pond is four. Assume that the number of amoebas follows a Poisson distribution.Find the probability that in a 10 ml sample:
  - a) there are exactly 5 amoebas;
  - b) there are no amoebas;
  - c) there are fewer than three amoebas.

[3, 3, 4]

- A3 a) In the mass production of bolts it is find that 5 percent of bolts are defective. Bolts are selected at random and put into packets of ten. A packet is selected at random. Find the probability that it contains:
  - i) three defective bolts;
  - ii) At least 8 defective bolts;
  - iii) less than three defective bolts.

 $[2,\,3,\,3]$ 

A4 A roulette wheel is divided into six sectors of unequal area, marked the numbers 1, 2, 3, 4, 5, 6. The wheel is spun and X is the random variable, the number on which the wheel stops. The probability distribution of x is shown in Table 1.

| Table | 1 |
|-------|---|
|       |   |

| X      | 1    | 2    | 3   | 4   | 5    | 6    |
|--------|------|------|-----|-----|------|------|
| P(X=x) | 1/16 | 3/16 | 1/4 | 1/4 | 3/16 | 1/16 |

Page 2 of 4

a) E(X)c) Var(X)

d) E(X-5)

 $[4,\!6,\!4]$ 

## SECTION B: [60 MARKS]

#### ANSWER ANY THREE QUESTIONS IN THIS SECTION

**B5** a) State any five assumptions of simple linear regression analysis.

- b) State and explain how to carry out residual tests and assess linear regression assumptions using each of the following;
- i) scatter plots
- ii) normal probability plot and quantile plots (Q-Q plots).
- c) Give advantages of using a sample as opposed to using a population.
- d) State and explain how missing data is handled in Statistics.

 $[5,\,3,\,3,\,3,\,6]$ 

**B6** a) The members of a sports team are interested in whether the weather has an effect on their results. They play 50 matches, with the following results shown on Table 2.

Table 2

|       | Good | Bad | Total |
|-------|------|-----|-------|
| Win   | 12   | 4   | 16    |
| Draw  | 5    | 8   | 13    |
| Lose  | 7    | 14  | 21    |
| Total | 24   | 26  | 50    |

Formulate suitable null and alternative hypotheses, and use a Chissquare test to test the claim, at the 1 percent significance level, that the weather has no effect on the team's results. State your conclusion clearly.

b) A driving school examined the results of 100 candidates who took their test for the first time. It was found that out of the 40

Page 3 of 4

men, 28 passed and out of the 60 women, 34 passed. The results are shown in Table 3. Table 3

|        | Pass | Fail | Total |
|--------|------|------|-------|
| Male   | 28   | 12   | 40    |
| Female | 34   | 26   | 60    |
| Total  | 62   | 38   | 100   |

Do these results indicate, at the 5 percent significance level, a relationship between the sex of a candidate and the ability to pass the driving test at the first attempt?

[10, 10]

**B7** a) Show that the least squares estimates  $(\hat{\beta}_0 \hat{\beta}_1)$  are unbiased estimaters of  $\beta_0 and \beta_1$  respectively.

- b) Derive the variance of the estimates and show that var  $\hat{\beta}_1 = \hat{\sigma}_0^2 / Sxx$
- i) Var  $(\hat{\beta}_0) = \hat{\sigma}_0^2 (1/n + \bar{X}^2/Sxx);$ where  $\hat{\sigma}_0^2$  is the Mean Square Error

Sxx is the variance of the independent variable X. N is the number of data points.

 $[4, \, 4, \, 6, \, 6]$ 

Page 4 of 4

**B8** A company gathered the following information on its advertising expenditure and sales generated in thousands as follows in Table 4.

| Table 4                 |                |
|-------------------------|----------------|
| Advertising Expenditure | Sales(thousand |
| 20                      | 44             |
| 24                      | 50             |
| 36                      | 52             |
| 30                      | 60             |
| 16                      | 46             |
| 34                      | 54             |
| 40                      | 64             |
| 30                      | 54             |
| 22                      | 50             |
| 38                      | 58             |

a) Draw a scatter plot for the data and comment.

- b) Estimate the least squares regression line.
- c) Calculate Pearson's Product moment correlation coefficient and interpret your answer.
- d) Calculate the coefficient of determination and interpret it.
- e) Predict the sales when 25000 is budgeted for advertising.

 $[6,\,6,\,3,\,3,\,2]$ 

# END OF QUESTION PAPER