MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES AND TECHNOLOGY

DEPARTMENT: COMPUTER SCIENCE AND INFORMATION SYSTEMS MODULE: THEORY OF COMPUTATION

CODE: BCOS212

SESSIONAL EXAMINATIONS DECEMBER 2023

DURATION: 3 HOURS
EXAMINER: MS C KATSANDE

INSTRUCTIONS

1. Answer Any 4 questions
2. Each question carries 25 marks
3. Start a new question on a fresh page
4. Total marks 100

Additional material(s): None

Question 1

a) Enumerate four (4) real-world applications that can be developed using Finite State Machines (FSMs). For each application, describe how FSMs are utilized to model and control the system's behaviour.

12 Marks
b) Prove that for every integer n, if n is odd, then n^{2} is odd.

4 Marks
c) Consider the following transition table:

States	Next State for Input a	Next State for Input b
q_{0}	q_{1}	q_{2}
q_{1}	q_{1}	q_{3}
q_{2}	q_{2}	q_{3}
${ }^{*} \mathrm{q}_{3}$	q_{3}	q_{3}

i. Draw the transition graph for this automaton.

5 Marks
ii. Give its formal definition (no need to rewrite the function δ).

Question 2

a) Construct a Deterministic Finite Automata (DFA) for the language accepting strings ending with ' 0011 ' over input alphabets $\sum=\{0,1\}$.

8 Marks
b) Given the following Deterministic Finite Automata (DFA)

Check if it accepts or reject the following strings:
i) bbab

4 Marks
ii) aaba
c）Outline any four（4）applications of regular expressions．
4 Marks
d）Explain the language described by the regular expression $(0 \cup 1)((0 \cup 1)(0 \cup 1))^{*}$ and provide examples of strings that would be accepted by it．

5 Marks

Question 3

a）Construct a Non－deterministic Finite Automata（NFA）in which all the string contains a substring 1101.

8 Marks
b）Given the Context－Free Grammar $\mathrm{G}_{2}=$

```
    \langleSENTENCE\rangle }->\mathrm{ <NOUN-PHRASE \\VERB-PHRASE>
<NOUN-PHRASE) }->\langle\mathrm{ CMPLX-NOUN> | (CMPLX-NOUN> (PREP-PHRASE)
    (VERB-PHRASE) }->\mathrm{ 〈CMPLX-VERB>| (CMPLX-VERB) (PREP-PHRASE)
    (PREP-PHRASE) }->\mathrm{ 〈PREP>}\langle\mathrm{ CMPLX-NOUN)
<CMPLX-NOUN) }->\mathrm{ \ARTICLE>(NOUN>
    \langleCMPLX-VERB\rangle }->\mathrm{ \VERB)|〈VERB>(NOUN-PHRASE)
        (ARTICLE) }->\mathrm{ a| the
            <NOUN> }->\mathrm{ boy|girl|flower
            <VERB) }->\mathrm{ touches | likes | sees
            (PREP) }->\mathrm{ with
```

Show that the string the girl touches the boy with the flower has two different leftmost derivations in grammar G_{2} ．

10 Marks
c）Create a context free grammar of non－regular language $\mathrm{L} 1=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n}\right.$ is a positive integer $\}$ ．

7 Marks

Question 4

a）Convert the following Non－Deterministic Finite Automata（NFA）to its equivalent Deterministic Finite Automata（DFA）．

9 Marks

b) Check whether the following grammar is ambiguous or not for string $w=a a b b c c d d$ 6 Marks
$\mathrm{S} \rightarrow \mathrm{AB} / \mathrm{C}$
$\mathrm{A} \rightarrow \mathrm{aAb} / \mathrm{ab}$
$\mathrm{B} \rightarrow \mathrm{cBd} / \mathrm{cd}$
$\mathrm{C} \rightarrow \mathrm{aCd} / \mathrm{aDd}$
$\mathrm{D} \rightarrow \mathrm{bDc} / \mathrm{bc}$
c) Convert the given Context Free Grammar (CFG) into an equivalent Chomsky Normal Form (CNF).

10 Marks

$$
\begin{aligned}
& S \rightarrow A S A \mid a B \\
& A \rightarrow B \mid S \\
& B \rightarrow b \mid \epsilon
\end{aligned}
$$

Question 5

a) Given a language $\mathrm{L}=0^{\mathrm{N}} 1^{\mathrm{N}}$ where $\mathrm{N}>0$
i) Give an implementation-level algorithm of a Turing machine that decides the language.

5 Marks
ii)Design a Turing Machine which recognizes the given language.

10 Marks
b) List any five (5) differences between the complexity classes P and NP. Provide an example of a problem that belongs to each class and justify why it belongs to the class.

10 Marks

