

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF AGRIBUSINESS AND COMMERCE

Agricultural Economics and Development

ECONOMETRICS II

CODE: HACE417

SESSIONAL EXAMINATIONS JULY 2022

DURATION: 3 HOURS

EXAMINER: MR N. CHIPUNZA

INSTRUCTIONS

- 1. Answer any 5 questions
- 2. Start a new question on a fresh page
- 3. Total marks 120

Additional material(s): Calculator

Page 1 of 4

Question 1

- i. State the two qualities that a valid instrument must have in instrumental variable (IV) estimations. [6]
- ii. Interpret the difference between the IV and OLS estimates of the coefficient on X in the model below. [8]

$$y_i = \alpha + \beta X_i + \varepsilon_i$$

$$Cov(X_i, \varepsilon_i) \neq 0$$

iii. How do the IV and OLS estimates compare if the instrument is weak and the sample is small? [6]

Question 2

A. Suppose a series. Y_t , is modelled by the following three equations:

$$y_t = \emptyset + e_t \tag{1}$$

$$e_t | \mathbf{I}_{t-1} \sim \mathbf{N}(0, \mathbf{h}_t) \tag{2}$$

$$h_{t} = \alpha_{0} + \alpha_{1} \ e_{t-1}^{2}, \alpha_{0} > 0, 0 \le \alpha_{1} < 1$$
(3)

[6]

[8]

- i. How would you describe this model and why?
- ii. Describe the distribution of the error term in equation (2) [6]B. In a GARCH(p, q) model, what do the p and q indicate? [8]

Question 3

- i. What are the dummy variables? [5]
 ii. Discuss briefly the features of the dummy variable regression model [7]
- iii. Discuss the uses of dummy variables.

Question 4

If your model has heteroskedastic error terms, what would you do?

i. If you do not know the functional form of the error variance. [6]

Page 2 of 4

- ii. If you suspect that the error variance is homoscedastic within a group but not across groups. [7]
- iii. If you know that the error variance is a function of one continuous variable i.e, if $var(e_i) = \sigma_i^2 = \sigma^2 w_i$, where w_i is a continuous variable. [7]

Question 5

- a. The values of each X_{ik} are not random and are not exact linear functions of the other explanatory variables.
- *b.* $var(e_i) = \sigma^2$
- c. The least squares estimators are BLUE.
- *d.* $cov(y_i, y_j) = cov(e_i, e_j) = 0;$ (i = j)
- i. Which of the assumptions below are necessary for the multiple regression model. [4]
- ii. State what the assumptions are and why they are necessary. [4]

iii. Explain briefly why the remaining option is not a necessary assumption.

iv. A model estimated using a dataset with 125 observations generates the following results.

[4]

	SS	df	MS
Regression	919587.543	4	229896.9
Error	2590390.62	121	534.2113

Variable	β	Std. Error	t	P > t
x_1	-0.012655	0.005519	-2.28937	0.022
<i>x</i> ₂	0.5957923	0.014482	41.13934	0.000
<i>x</i> ₃	1.124589	0.877192	1.282032	0.200
x_4	0.3237421	0.060709	5.332661	0.000
Constant	8.86016	1.766116	5.016749	0.000

- i. What is the R^2 for this sample? [4]
- ii. What information does the R^2 provide? [4]

Page 3 of 4

Ques	tion 6				
i.	Explain the problem of multicollinearity and its types.	[5]			
ii.	Explain the methods for detection of multicollinearity.	[5]			
iii.	Describe the consequences of multicollinearity.	[5]			
iv.	How would you proceed for estimation of parameters in the pres perfect multicollinearity?	ence of [5]			
Question 7					
Explain when variable y_t is said to Granger-cause x_t , and outline the steps					
involved in conducting a Granger causality test. [

END OF EXAMINATION