

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF AGRIBUSINESS AND COMMERCE

DEPARTMENT OF AGRICULTURE ECONOMICS

AND

DEVELOPMENT

APPLIED AGRICULTURAL PRODUCTION ECONOMICS

CODE: AEDT 211

SESSIONAL EXAMINATIONS AUGUST 2022

DURATION: 3 HOURS

EXAMINER: MR. N. JAMBO

INSTRUCTIONS

- 1. Answer ANY Four (4) questions
- 2. Be concise and clear
- 3. Start a new question on a fresh page
- 4. Total marks 100

Page 1 of 4

QUESTION 1

- a) Define the term production.
- **b)** The table below shows the calculation of the optimum production level at an input price (Px) of \$12 per unit and an output price (Py) of \$2 per unit.

Complete the table below and show that profit is maximum when VMP = Px

[24]

[1]

UNITS OF INPUT (X)	TOTAL PRODUCT (Y)	VALUE OF MARGINAL PRODUCT (VMP)	VALUE OF TOTAL PRODUCT (VTP)	TOTAL INPUT COSTS (TIC)	TOTAL PROFIT (∏)
0	0	-	-	-	-
1	3	-	-	-	-
2	12	-	-	-	-
3	24	-	-	-	-
4	38	-	-	-	-
5	53	-	-	-	-
6	67	-	-	-	-
7	78	-	-	-	-
8	86	-	-	-	-
9	92	-	-	-	-
10	96	-	-	-	-
11	98	-	-	-	-
12	94	-	-	-	-

QUESTION 2

a) Explain the following terms:		
i. Isoquant	[2]	
ii. Marginal Rate of Technical Substitution (MRTS)	[2]	
b) Outline any four (4) characteristics of an isoquant.	[4]	
c) Consider the Cobb Douglas Production function:		
$Q = 4X_1^{1/2}X_2^{1/2},$		
Where X_1 and X_2 are two variable input factors employed in the production of Q. Determine		
the marginal rate of technical substitution (MRTS) of X_1 for X_2 . [5]		
d) With the aid of diagrams, discuss the following categories of isoquants:		
i. Isoquants with fixed proportion combination of inputs,	[4]	

ii. Isoquants with constant rate of substitution between inputs, [4]

Page 2 of 4

iii. Isoquants with varying rate of substitution between inputs.

QUESTION 3

a) A farmer is considering undertaking the production of either maize or beans. Study the following information about the two crops then answer the questions that follow:

	Maize	Beans
Yield per ha	5 500 kg	5 000 kg
Price	\$15 per kg	\$50 per kg
Cost of cultivation/ha	\$3 000	\$3 600
Amount of seeds/ha	25 kgs	20 kgs
Cost of seeds/kg	\$100	\$800
Labor requirements/ha	50 man-days	75 man-days
Cost of labor	\$50 per man-day	\$200 per man-day
Cost of DAP fertilizer/bag	\$1 500	\$1 500
Amount of DAP fertilizer/ha	3 bags	2 bags
Amount of CAN fertilizer/ha	3 bags	1 bag
Cost of CAN fertilizer/bag	\$1 000	\$1 000
Cost of sprays	-	\$3 000

	i.	Calculate the gross margins for each crop.	[14]	
	ii.	From your calculations, which crop is more profitable to grow?	[2]	
b)	Suppo	se a production function is given by: $Y = 5L^{0.8}$		
	Where	e, the price per unit of labor (L) is \$4 and the price of Y is \$2.		
	i.	Calculate the level of output required to maximize the profit.	[6]	
	ii.	What is the profit at this optimum level of production?	[3]	
-	QUESTION 4a) Distinguish between short run and long run in the context of agricultural production.			
			[4]	
b)	With t	he aid of a graph, discuss the characteristic features of stage one (1) in the		
	produc	ction process.	[10]	
c) Determine the state of elasticity of production at the three (3) stages of production.			n.	
			[6]	
d)	Outlin	e any five (5) uses of production functions.	[5]	
Page 3	of 4			

[4]

QUESTION 5

a)	Define the following terms:					
	i.	Increasing returns to scale	[2]			
	ii.	Decreasing returns to scale	[2]			
	iii.	Constant returns to scale	[2]			
b)	Determ	nine whether the following production functions exhibit constant, or incre	asing or			

decreasing returns to scale. In each case show whether economies or diseconomies of scale exist.

$$i. \qquad Q = 2L + K \tag{3}$$

$$ii. \qquad Q = 2L^{\vartheta} 3K^{1-\theta}$$

$$[3]$$

iii.
$$Q = 5L^{0.2}K^{0.9}$$
 [3]

c) A farm has a contract to produce 1000 tons of maize. The farm uses labor (L) and capital (K) to produce the maize. The price of labor (P_L) is \$10 per hour and the price of capital (P_K) is \$40 per tractor hour.

The production function for the maize output is given as:

$$Q = f(L, K) = 20L^{1/2}K^{1/2}$$

Determine the amount of labor and capital required to minimize the cost of producing the 1000 tons of maize. [10]

END OF EXAMINATION