MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF AGRIBUSINESS AND COMMERCE

 DEPARTMENT OF AGRICULTURE ECONOMICSAND

DEVELOPMENT

APPLIED AGRICULTURAL PRODUCTION ECONOMICS
CODE: AEDT 211
SESSIONAL EXAMINATIONS
AUGUST 2022
DURATION: 3 HOURS
EXAMINER: MR. N. JAMBO

QUESTION 1

a) Define the term production.
b) The table below shows the calculation of the optimum production level at an input price (Px) of $\$ 12$ per unit and an output price (Py) of $\$ 2$ per unit.

Complete the table below and show that profit is maximum when VMP $=\mathrm{Px}$
[24]

UNITS OF INPUT (X)	TOTAL PRODUCT (Y)	VALUE OF MARGINAL PRODUCT (VMP)	VALUE OF TOTAL PRODUCT (VTP)	TOTAL INPUT COSTS (TIC)	TOTAL PROFIT (IT)
0	0	-	-	-	-
1	3	-	-	-	-
2	12	-	-	-	-
3	24	-	-	-	-
4	38	-	-	-	-
5	53	-	-	-	-
6	67	-	-	-	-
7	78	-	-	-	-
9	92	-	-	-	-
10	96	-	-	-	-
11	98	-	-	-	-
12	94	-	-	-	-

QUESTION 2

a) Explain the following terms:
i. Isoquant
ii. Marginal Rate of Technical Substitution (MRTS)
b) Outline any four (4) characteristics of an isoquant.
c) Consider the Cobb Douglas Production function:

$$
Q=4 X_{1}{ }^{1 / 2} X_{2}{ }^{1 / 2}
$$

Where X_{1} and X_{2} are two variable input factors employed in the production of Q . Determine the marginal rate of technical substitution (MRTS) of X_{1} for X_{2}.
d) With the aid of diagrams, discuss the following categories of isoquants:
i. Isoquants with fixed proportion combination of inputs,
ii. Isoquants with constant rate of substitution between inputs,

Page 2 of 4

iii. Isoquants with varying rate of substitution between inputs.

QUESTION 3

a) A farmer is considering undertaking the production of either maize or beans. Study the following information about the two crops then answer the questions that follow:

	Maize	Beans
Yield per ha	5500 kg	5000 kg
Price	$\$ 15$ per kg	$\$ 50$ per kg
Cost of cultivation/ha	$\$ 3000$	$\$ 3600$
Amount of seeds/ha	25 kgs	20 kgs
Cost of seeds/kg	$\$ 100$	$\$ 800$
Labor requirements/ha	50 man-days	75 man-days
Cost of labor	$\$ 50$ per man-day	$\$ 200$ per man-day
Cost of DAP fertilizer/bag	$\$ 1500$	$\$ 1500$
Amount of DAP fertilizer/ha	3 bags	2 bags
Amount of CAN fertilizer/ha	3 bags	1 bag
Cost of CAN fertilizer/bag	$\$ 1000$	$\$ 1000$
Cost of sprays	-	$\$ 3000$

i. Calculate the gross margins for each crop.
ii. From your calculations, which crop is more profitable to grow?
b) Suppose a production function is given by: $\boldsymbol{Y}=\mathbf{5} \boldsymbol{L}^{\mathbf{0 . 8}}$

Where, the price per unit of labor (L) is $\$ 4$ and the price of Y is $\$ 2$.
i. Calculate the level of output required to maximize the profit.
ii. What is the profit at this optimum level of production?

QUESTION 4

a) Distinguish between short run and long run in the context of agricultural production.
b) With the aid of a graph, discuss the characteristic features of stage one (1) in the production process.
c) Determine the state of elasticity of production at the three (3) stages of production.
d) Outline any five (5) uses of production functions.

Page 3 of 4

QUESTION 5

a) Define the following terms:
i. Increasing returns to scale
ii. Decreasing returns to scale
iii. Constant returns to scale
b) Determine whether the following production functions exhibit constant, or increasing or decreasing returns to scale. In each case show whether economies or diseconomies of scale exist.
i. $\quad Q=2 L+K$
ii. $\quad Q=2 L^{9} 3 K^{1-\theta}$
iii. $\quad Q=5 L^{0.2} K^{0.9}$
c) A farm has a contract to produce 1000 tons of maize. The farm uses labor (L) and capital (K) to produce the maize. The price of labor $\left(P_{L}\right)$ is $\$ 10$ per hour and the price of capital $\left(P_{K}\right)$ is $\$ 40$ per tractor hour.
The production function for the maize output is given as:

$$
Q=f(L, K)=20 L^{1 / 2} K^{1 / 2}
$$

Determine the amount of labor and capital required to minimize the cost of producing the 1000 tons of maize.

END OF EXAMINATION

