

# MANICALAND STATE UNIVERSITY

OF

## **APPLIED SCIENCES**

# FACULTY OF ENGINEERING, APPLIED SCIENCES & TECHNOLOGY

## DEPARTMENT OF APPLIED STATISTICS

**MODULE: TIME SERIES ANALYSIS** 

### CODE: ASTA 222

SESSIONAL EXAMINATIONS

### APRIL 2023

### **EXAMINER: MR A.CHAKAIPA**

#### **INSTRUCTIONS**

- 1. Answer **All** in Section A.
- 2. Answer three questions in Section B.
- 3. Start a new question on a fresh page.
- 4. Total marks: 100.

#### Additional material(s)

• Statistical tables, graph paper, Non-programmable electronic scientific calculator, List of formulae.

[Page 1 of 4]

#### **SECTION A [40 MARKS]**

#### Answer ALL questions in this section

## A 1

| (a) Explain in brief the Box-Jenkins Technique. | (3) |
|-------------------------------------------------|-----|
|                                                 |     |

(4)

(b) Differentiate between a sesonal and trend variations in time series analysis.

## A 2

(a) Sate the use of seasonal analysis in time series. Consider the following quarterly sales
(2) of houses by Valley Estates in Cape Peninsula for the period 2008 to 2011

| Quarter | 2008 | 2009 | 2010 | 2011 |
|---------|------|------|------|------|
| Q1      | 54   | 58   | 49   | 60   |
| Q2      | 55   | 61   | 55   | 64   |
| Q3      | 94   | 87   | 95   | 99   |
| Q4      | 70   | 66   | 74   | 80   |

| (b) Plot the time series for the quarterly house sales graphically.                                                                                     | (4) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (c) Find the least squares trend line for quarterly house sales in Cape town .                                                                          | (5) |
| (d) Compute the quarterly seasonal indexes for each quarter.                                                                                            | (8) |
| (e) Hence estimate the seasonally adjusted trend values for quarters 3 and 4 of 2012. Use the trend line equation and seasonal indexes obtained before. | (4) |
| A 3                                                                                                                                                     |     |
| Let $Z_t = a_t + 0.3a_{t-1}$ where $a_t \sim NID(0, \sigma_{t^2})$ and $a_t$ is a white noise term.                                                     |     |
| (a) Define white noise                                                                                                                                  | (1) |
| (b) Find the mean of $Z_t$                                                                                                                              | (2) |
| (c) Variance of $Z_t$                                                                                                                                   | (2) |
| (d) The auto covariance function of $Z_t$                                                                                                               | (3) |
| (e) The autocorrelation function of $Z_t$                                                                                                               | (2) |
|                                                                                                                                                         |     |

#### SECTION B [60 MARKS]

#### Answer any THREE questions in this section

#### **B4**

Suppose  $Z_t = 10 + 3t + X_t$ , where  $X_t$  is a zero mean stationery process with autocovariance function  $\gamma_k$ 

(a) Find the mean of  $Z_t$  (3)

(3)

(2)

(3)

(3)

(4)

- (b) Find the autocovariance function of  $Z_t$
- (c) Is  $Z_t$  stationary? (why or why not?)

Suppose that an Autoregressive process of order 2, AR(2) process is given by  $Z_t = \frac{1}{3}Z_{t-1} + \frac{2}{9}Z_{t-2} + a_t$ 

- (d) How do you check for stationarity of an AR process. Hence show that  $Z_t$  is a stationary process. (3)
- (e) Showing all your working, deduce that the autocorrelation function (acf) of  $Z_t$  is given by  $\rho_t = \frac{16}{21} \left(\frac{2}{3}\right)^{|k|} + \frac{5}{21} \left(\frac{-1}{3}\right)^{|k|}$  for k = 0, 1, 2, ... (9)

#### **B** 5

- (a) State and explain in brief three transformations that can be used to make a time series (6) stationary. Suppose we have a process given by  $Z_t = 5 + 2t + a_t$  where  $a_t$  is white noise.
- (c) Verify that the process is now stationary if we difference once. (4) Suppose  $Z_t$  is stationary with auto-covariance function  $\gamma_k$
- (d) Show that  $W_t = \bigtriangledown Z_t = Z_t Z_{t-1}$  is stationary

(b) Show that  $X_t$  is not stationary.

(e) Show that  $U_t = \bigtriangledown Z_t^2 = \bigtriangledown (Z_t - Z_{t-1})$  is stationary.

#### **B6**

For an AR(p) process,  $Z_t = \phi_1 Z_{t-1} + \phi_2 Z_{t-2} + ... + \phi_p Z_{t-p} + a_t$  Given that the Yule-Walker equation for a stationary AR(p) model is given by  $\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2} + ... + \phi_p \rho_{k-p}$  for k > 1 where  $\rho_k = corr(Z_t, Z_{t-1}) = ACF$  at lag k

(a) Derive the estimates of  $\phi = [\phi_1, \phi_2..., \phi_p]$  using the Yule-Walker equations. Hence or (10) otherwise, find the method of Moments estimates of  $\phi_1$  and  $\phi_2$  for an AR(2) process given by  $Z_t = \phi_1 Z_{t-1} + \phi_2 Z_{t-2} + a_t$ 

There are several methods employed to test for model adequacy in time series , which include the following

- (b) Test for independence
- (c) Test for distribution of residuals For each of the above tests, specify any two tests employed, any expected results (including deviations) and hypotheses where necessary. (5)

(5)

(11)

## **B**7

Consider an AR(1) process given by  $Z_t = \phi Z_{t-1} + a_t$  Using the least squares method show that  $\hat{\phi} = \frac{\sum_{t=2}^{n} Z_t Z_{t-1}}{\sum_{t=2}^{n} (Z_{t-1})^2}$ 

- (a) Sate an underlying assumptions to be met for the derivation above Show that the Maximum Likelihood of  $\hat{\phi} \approx r_1$  (9)
- (b) State any theorem or lemma needed to arrive at derivation above.

#### END OF QUESTION PAPER