MANICALAND STATE UNIVERSITY OF

APPLIED SCIENCES

FACULTY OF APPLIED SCIENCES \& TECHNOLOGY

DEPARTMENT OF APPLIED STATISTICS

MODULE: STOCHASTIC PROCESSES

CODE: HAST 428
SESSIONAL EXAMINATIONS
JUNE 2023

DURATION: 3 HOURS
EXAMINER: D. MHINI

INSTRUCTIONS

1. Answer All in Section A
2. Answer three questions in Section B.
3. Start a new question on a fresh page
4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator.

SECTION A (Answer ALL Questions from this Section)[40]

A1. (a) Define Brownian motion process and state its properties.
(b) Show that $E\left[\left(B_{t}-B_{s}\right)^{2}\right]=t-s$.

A2. (a) Define a martingale and state its properties.
(b) Prove that $X_{t}=B_{t}+4 t$ is a martingale.

A3.(a) Define the following:
(i) Stochastic processes. [2]
(ii) State of a Markov chain.
(iii) A counting processes.
(iv) Holding time.
(b) (i) Explain the what you understand by a queuing system described in

Kendall-Lee notation as $M / M / 2$.
A4. Consider the Markov chain with three states, $S=\{1,2,3\}$, that has the following transition matrix.

$$
P=\left(\begin{array}{ccc}
0.6 & 0.2 & 0.2 \\
0.4 & 0 & 0.6 \\
0 & 0.8 & 0.2
\end{array}\right)
$$

(a) Draw the state transition diagram for this chain.
(b) Find $P\left(X_{2}=3 \mid X_{0}=1\right)$.

SECTION B (Answer any THREE Questions from this Section)[60]

B5. Consider the queuing model $(M / M / 1):(G D / R / R)$.
(a) For the process above, define states of the system and obtain the probability equations of queuing process.
(b) Solve the steady- state equations and prove that

$$
\begin{equation*}
p_{n}=\binom{R}{n} n!\rho^{n} \rho_{0}, n=1,2, \ldots R . \tag{5}
\end{equation*}
$$

(c) Find the value of p_{o}.
(d) Prove that $L_{s}=R+\frac{1}{\rho}\left(1-p_{0}\right)$.

B6. (a) Let $X \sim \operatorname{Poison}(\lambda)$. Find
(i) PGF of X. [4]
(ii) Use the PGF to find the mean and variance of X.
(b)(i) State the Markov property.
(ii) State conditions that a counting processes must satisfy.

B7. (a) Let $t \geq s$ then compute $E\left[B_{s}^{2} B_{t}-B_{s}^{3}\right]$.
(b)Prove that $M_{t}=B_{t}^{2}-t$ is a martingale with respect to the filtration F_{t}. [4]
(c) State and explain any four service discipline.

B8. (a) State and prove Chapman-Kolmogrov equation for a discrete Markov chain.
(b) The city branch of a bank, during lunch hour, has four tellers to serve its customers. Customers are assumed to arrive according to Poison process with mean rate of five per two minutes. A customer can go to any teller who is free, but when all tellers are busy customers wait in a single waiting line. The service time at each teller can be assumed to follow an exponential distribution with a mean of 1.5 minutes.

Determine the values of L_{q} and explain your answer.

END OF EXAMINATION PAPER

