

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES & TECHNOLOGY

DEPARTMENT OF APPLIED STATISTICS

MODULE: REGRESSION AND ANOVA II

CODE: HAST 423

SESSIONAL EXAMINATIONS APRIL 2023

DURATION: 3 HOURS

EXAMINER: NYAKUAMBA T

INSTRUCTIONS

- 1. Answer All in Section A
- 2. Answer three questions in Section B.
- 3. Start a new question on a fresh page
- 4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator, Statistical Tables

SECTION A (40 MARKS)

ANSWER ALL QUESTIONS

A1 (a) What is meant by regression analysis?					
(b) What justifies the inclusion of a disturbance or error te	rm in				
regression analysis?	[3]				
A2 M/bat do you understand by the following terms as used in re	arossion				

A2. What do you understand by the following terms as used in regression analysis?

(a) autocorrelation	[3]
(b) responds variable	[3]
(c) laverage point	[3]
(d) predictor	[3]
(e) coefficient of determination	[3]

A3 Suppose you have a regression model of the form

$Y = a + bXi + ei$ { $i = 1, 2,, n$ }

- (a) state the assumption underlying this model [5]
- (b) derive the least square estimates of the two parameters and show that both are unbiased. [6, 8]

SECTION B (60 marks)

Attempt any 3 Questions being careful to number them from B4 to B7

B4. Draw a scatter plot diagram of two variables that

(a). are typically almost un corelated [2]

- (b). have a correlation coefficient close to 1[2]
- (c). have a correlation coefficient close to -1 [2]
- (d). Prove that, if two random variables X and Y are such that y = a + bX

(Where a and b are constants), then $\rho xy = +1 \text{ } or -1$ [4]

(e). Let two random variables X and Y have correlation coefficient ρxy ,

Prove that
$$-1 \le \rho xy \le 1$$
 [10]

B5.

A scientist collects experimental data on the radius of a propellant grain Y, as a function of powder temperature X_1 and extension rate X_2 .

Y	25	30	28	32	40
X1	40	20	15	32	28
X2	20	15	15	24	20

He took 5 observations of each variable and the data is as follows

Suppose the data can be described by the model

 $Y_i = b_0 + b_1 X_i + b_2 X_2 + e_i$

Where e_i follows $N(0, \sigma^2)$ and $cov(e_i, e_j) = 0$ if $i \neq j$

(a). express the model in matrix form

[2]

- (b). obtain the decision matrix and calculate
 - *X*[′]*Y* and *X*[′]*X* [1, 3,3]
- (c). calculate the least squares estimate of b given that

$$(X'X)^{-1} = \begin{bmatrix} 1.165 & -0.134 & -0.180 \\ -0.134 & 0.0041 & 0.0049 \\ -0.180 & 0.0049 & 0.0156 \end{bmatrix}$$

(i). calculate the hat matrix H and explain its importance in regression

(ii).test the hypothesis that $H_0: \beta_1 = 0$ versus $H_1: \beta_1 \neq 0$

use $\alpha = 0.10$ and MSE = 7.815

[4]

B6. Use the following data to answer the following questions:

Х	22	68	108	137	255	315	390	405	685	700	1100
У	0.756	2.4	3.2	4.7	9.3	12.0	13.4	14.4	24.5	26.00	38.0
					1						
I. Plot the data above and comment.								[5]			
	II. Fit the model above							[4]			
	III. Do you think the above model is the best?										
Support your answer								[4]			
IV. State the assumptions satisfied by this model								[3]			
	V. Estimate the error variance								[4]		
B7. Discuss the problems of											
I. Multicollinearlity in multiple regression.											
(a) What it is							[2]				
(b) How it affects regression analysis								[5]			
(c) What could be done about it								[3]			
ii. (a) Distinguish between step-wise regression and forward selection											
approach to regression [3							[3]				
(b) Explain the use of step wise regression [3							[3]				

(c)Outline what is involved in the analysis of residuals.

END OF EXAMINATION PAPER

[4]