MANICALAND STATE UNIVERSITY OF

APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES \& TECHNOLOGY

DEPARTMENT OF APPLIED STATISTICS

MODULE: REGRESSION AND ANOVA II

CODE: HAST 423
SESSIONAL EXAMINATIONS APRIL 2023

DURATION: 3 HOURS

EXAMINER: NYAKUAMBA T

INSTRUCTIONS

1. Answer All in Section A
2. Answer three questions in Section B.
3. Start a new question on a fresh page
4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator, Statistical Tables

SECTION A (40 MARKS)

ANSWER ALL QUESTIONS

A1 (a) What is meant by regression analysis?
(b) What justifies the inclusion of a disturbance or error term in regression analysis?

A2. What do you understand by the following terms as used in regression analysis?
(a) autocorrelation
(b) responds variable
(c) laverage point
(d) predictor
(e) coefficient of determination

A3 Suppose you have a regression model of the form

$$
Y=a+b X i+e i \quad\{i=1,2, \ldots n\}
$$

(a) state the assumption underlying this model
(b) derive the least square estimates of the two parameters and show that both are unbiased.
[6, 8]

SECTION B (60 marks)

Attempt any 3 Questions being careful to number them from B4 to B7

B4. Draw a scatter plot diagram of two variables that
(a). are typically almost un corelated
(b). have a correlation coefficient close to 1
(c). have a correlation coefficient close to -1
(d). Prove that, if two random variables X and Y are such that $y=a+b X$ (Where a and b are constants), then $\rho x y=+1$ or -1
(e). Let two random variables X and Y have correlation coefficient $\rho x y$,

$$
\text { Prove that }-1 \leq \rho x y \leq 1
$$

B5.
A scientist collects experimental data on the radius of a propellant grain Y, as a function of powder temperature X_{1} and extension rate X_{2}.

He took 5 observations of each variable and the data is as follows

Y	25	30	28	32	40
X 1	40	20	15	32	28
X 2	20	15	15	24	20

Suppose the data can be described by the model $Y_{i}=b_{0}+b_{1} X_{i}+b_{2} X_{2}+e_{i}$

Where e_{i} follows $N\left(0, \sigma^{2}\right)$ and $\operatorname{cov}\left(e_{i}, e_{j}\right)=0$ if $i \neq j$
(a). express the model in matrix form
(b). obtain the decision matrix and calculate

$$
X^{\prime} Y \text { and } X^{\prime} X
$$

(c). calculate the least squares estimate of b given that

$$
\left(X^{\prime} X\right)^{-1}=\left[\begin{array}{ccc}
1.165 & -0.134 & -0.180 \\
-0.134 & 0.0041 & 0.0049 \\
-0.180 & 0.0049 & 0.0156
\end{array}\right]
$$

(i). calculate the hat matrix H and explain its importance in regression
$[3,4]$
(ii).test the hypothesis that $\quad H_{0}: \beta_{1}=0$ versus $H_{1}: \beta_{1} \neq 0$ use $\alpha=0.10$ and $\mathrm{MSE}=7.815$

B6. Use the following data to answer the following questions:

X	22	68	108	137	255	315	390	405	685	700	1100
y	0.756	2.4	3.2	4.7	9.3	12.0	13.4	14.4	24.5	26.00	38.0

I. Plot the data above and comment.
II. Fit the model above
III. Do you think the above model is the best?

Support your answer
IV. State the assumptions satisfied by this model
V. Estimate the error variance

B7. Discuss the problems of
I. Multicollinearlity in multiple regression.
(a) What it is
(b) How it affects regression analysis
(c) What could be done about it
ii. (a) Distinguish between step-wise regression and forward selection approach to regression
(b) Explain the use of step wise regression
(c)Outline what is involved in the analysis of residuals.

