MANICALAND STATE UNIVERSITY
OF APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES \& TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE \& INFORMATION SYSTEMS
MATHEMATICAL FOUNDATIONS FOR COMPUTER SCIENCE
CODE: BCOS 115

SESSIONAL EXAMINATIONS
APRIL 2023

DURATION: 3 HOURS

EXAMINER: MR I. ZVAWANDA

INSTRUCTIONS

1. Answer $\boldsymbol{A L L}$ questions from Section A
2. Answer any three questions from Section B REQUIREMENTS

Non-programmable scientific calculator

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

A1. Define the following terms as used in mathematical foundations
i) Combination
ii) proposition
iii) Intersection of a Set
iv) Analogue
b) Distinguish between disjunction and conjunction

[2, 2, 2, 2, 2]

A2. Let p be the statement 'She studied Computer Science at the Manicaland State University of Applied Sciences" and let q be "She lives in Mutare".
i) Find the disjunction of the composite statement and construct the truth table.
ii) What do you understand by the term "negation of a statement'
i) State and explain the three types of functions
ii) Let p be "roses are red " and q be "violets are blue". Find the conjugation $\mathrm{p} \wedge \mathrm{q}$ of the original statement and construct the truth table.

Verify that $\neg(\mathrm{p} \wedge \mathrm{q}.) .=\neg \mathrm{p} \vee \neg \mathrm{q} \quad\{$ Apply the De Morgan’s law. [6]

SECTION B: ANSWER ANY THREE (3) QUESTIONS IN THIS SECTION

B5

a) Determine whether the propositions $p \vee\left(q^{\wedge} r\right)$ and $(p \vee q)^{\wedge}(p \vee r)$ are logically equivalent
b) Prove that if $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{C}$ then $\mathrm{A} \subseteq \mathrm{C}$
c) Show that two sets A and B are equal if they contain the same elements [7, 7, 6]

B6

a) Relations can be divided into four types. State and explain the four types of relations.
b) Show that
i. $\quad a^{*} a=a$
ii. $\mathrm{a}+\mathrm{a}=\mathrm{a}$
[14,3,3]

B7
a) Find the inverses of the following functions
i) $\mathbf{y}=e^{6 x}$
ii) $Y=\operatorname{In}(2 x-2)$
iii) $\mathrm{Y}=\frac{2 x}{\mathrm{x}+3 a}$
b) Prove that $\sqrt{ } 2$ is not a rational number
c) Construct a truth table of the following switching circuit

$$
A^{\wedge}\left(B \vee A^{c}\right)
$$

a)
i. Negate the statement $\forall x \in R$, $\exists y \in R,: x \geq y$
ii. If $\mathrm{R}=\{(\mathrm{c}, 4),(\mathrm{c}, 6),(5, \mathrm{~d})\}$ is a relation from A to B . Find the inverse relation of R?
b) Find $f_{0} g$ of each of the following
i) $f(x)=x+2, g(x)=x^{2}-4$
ii) $f(x)=x^{2} \quad, g(x)=x^{3}$
iii) $f(x)=\sqrt{ } x^{2}-1 \quad g(x)=\sqrt{ } x^{2}+1$
[6, 6, 2, 3, 3]

END OF QUESTION PAPER

