MANICALAND STATE UNIVERSITY

 OF
APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES \& TECHNOLOGY

DEPARTMENT OF MINING \& MINERAL PROCESSING ENGINEERING DEPARTMENT OF CHEMICAL \& PROCESSING ENGINEERING DEPARTMENT OF METALLURGICAL ENGINEERING

MODULE: ENGINEERING MATHEMATICS V

CODE: ENGT 314
SESSIONAL EXAMINATIONS
APRIL 2023

DURATION: 3 HOURS
EXAMINER: DR W. GOVERE

INSTRUCTIONS

1. Answer All in Section A
2. Answer three questions in Section B.
3. Start a new question on a fresh page
4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator, List of formulae.

SECTION A: [40 MARKS]

Answer all questions in this section

A1.
(a) Prove that if B and C are both inverses of the matrix A, then $B=C$.
(b)Assuming that the sizes of the matrices are such that the indicated operations can be performed prove that $A(B+C)=A B+A C$.
(c) Prove that

$$
\left|A^{-1}\right|=\frac{1}{\operatorname{det}(A)} .
$$

(d)Prove that if $a d-b c \neq 0$, then the reduced row echelon form of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
(e) Use the result in part (d) to prove that if $a d-b c \neq 0$, then the linear system

$$
\begin{aligned}
& a x+b y=k \\
& c x+d y=l,
\end{aligned}
$$

has exactly one solution.
(f) Define the terms ordinary and regular singular points in connection with a generic second order linear differential equation.
(g) State Frobenius' Theorem for solution of differential equations about a regular singular point.
$[3,3,3,3,3,3,3]$

A2

(a) Find the values of x and y in the equation $(x+i y)(2+i)=3-i$, given further that $x, y \in \mathbb{R}$.
(b) The cubic equation $2 z^{3}-5 z^{2}+c z-5=0 \quad c \in \mathbb{R}$, has a solution $z=1-2 i$ and hence find in any order:
(i) the other two solutions of the equation.
(ii) the value of c .
[3, 4]

A3

a) Use the transformation $x y=t$ to solve the equation

$$
\left(1+x^{2} y^{2}\right) y+(x y-1)^{2} x y^{\prime}=0
$$

b) Solve the Bernoulli equation

$$
x y^{\prime}+y=x^{2} y^{2}
$$

c) By finding an integrating factor, solve the initial value problem

$$
\left(3 x^{2}+8 y\right) d y+2 x y d x=0, \quad y(0)=1
$$

[4, 4, 4]

SECTION B: [60 MARKS]
 Answer any three questions in this section

B4
(a)Let $A=\left[\begin{array}{ccc}4 & 4 k & k \\ 0 & k & 4 k \\ 0 & 0 & 4\end{array}\right]$ be a given matrix. If the $\left|A^{2}\right|=16$, find the value of k
(b) Using row reduction, show that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right|=(b-a)(c-a)(c-b)
$$

(c) Solve the following systems of nonlinear equations for x, y and z :

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}=6 \\
& x^{2}-y^{2}+2 z^{2}=2 \\
& 2 x^{2}+y^{2}-z^{2}=3
\end{aligned}
$$

(d) Find the value of $a \& b$ for which the following systems of equations

$$
\begin{aligned}
& x-y+2 z=4 \\
& 3 x-2 y+9 z=14 \\
& 2 x-4 y+a z=b
\end{aligned}
$$

have
i. no solution.
ii. unique solution.
iii. infinitely many solutions.
$[4,4,5,3,2,2]$

B5

(a) Show that the equation,

$$
\frac{d y}{d x}+\frac{a x+h y+g}{h x+b y+f}=0
$$

is an exact first-order equation and hence solve it.
(a) Prove that for a $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, any linear combination of two solutions on an open interval I is again a solution of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ on I. In particular prove that, for such an equation, sums and constant multiples of solutions are again solutions.
(b) Solve the differential equation

$$
2 x \sin y-y \sin x+\left(x^{2} \cos y+\cos x\right) y^{\prime}=0
$$

subject to boundary conditions $\quad y=\frac{\pi}{6}$ if $x=\frac{\pi}{2}$
(c) Given that $y_{1}=e^{2 x}$ is a solution of $y^{\prime \prime}-4 y^{\prime}+4 y=0$ on the interval $(-\infty, \infty)$, use reduction of order to find a second solution y_{2}.
(d)Using the method of undetermined coefficients find the general solution of $9 \frac{d^{2} x}{d t^{2}}+18 \frac{d x}{d t}-16 x=18 \cos 7 t$.
[5, 3, 4, 4, 4]

B6

a) Derive a general expression for the Laplace transform of $\frac{d^{n} y}{d x^{n}}$.

Hence solve the following Laplace transform

$$
y^{\prime \prime \prime}+y^{\prime}=e^{x}, \quad y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0
$$

b)
i) Show that any Cauchy-Euler second order differential equation can be reduced to any equation with constant coefficients by means of the substitution

$$
x=e^{t}
$$

ii) Hence or otherwise find the general solution of the Euler equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}-2 x y^{\prime}-4 y=0 \tag{9,6,5}
\end{equation*}
$$

B7
a) Determine the convergence set for

$$
\sum_{n=0}^{\infty} \frac{2^{-n}}{n+1}(x-1)^{n}
$$

b) Write

$$
\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=0}^{\infty} c_{n} x^{n+1}
$$

as one power series.
c) Show that $x=0$ is a regular singular point of the equation

$$
4 x y^{\prime \prime}+2 y^{\prime}+y=0
$$

and obtain its solution near $x=0$.
d) Solve the differential equation

$$
y^{\prime \prime}-4 y^{\prime}+4 y=(x+1) e^{2 x}
$$

Using the variation of parameters method
[4, 3, 9, 4]

END OF QUESTION PAPER

