MANICALAND STATE UNIVERSITY OF

APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES \& TECHNOLOGY

DEPARTMENT OF APPLIED STATISTICS

MODULE: DEMOGRAPHY
CODE: HAST 422
SESSIONAL EXAMINATIONS
APRIL 2023

DURATION: 3 HOURS
EXAMINER: MR J. MANYEMBA

INSTRUCTIONS

1. Answer All in Section A
2. Answer Three questions in Section B.
3. Start a new question on a fresh page
4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator, Statistical Tables.

SECTION A [40 marks]

Answer ALL Questions being careful to number them A1 to A4.

A1. Contrast each of the following terms:
(a) Maternal mortality rate and Maternal Mortality Ratio,
(b) Reproductivity and Fertility,

A2. The population of Zimbabwe according to the 1992 national census was as in the table below.

Age Group	$\|c\|$ Male Population	Female Population	Total Population
$0-4$	788963	795728	1584691
$5-9$	821319	832469	1653788
$10-14$	724905	731846	1456751
$15-19$	615728	632510	1248238
$20-24$	466837	523060	989897
$25-29$	335713	376495	712208
$30-34$	280066	326299	606365
$35-39$	229360	259555	488915
$40-44$	174266	189509	363774
$45-49$	145437	143441	288878
$50-54$	133261	147339	280600
$55-59$	94713	86729	181442
$60-64$	95510	84213	179723
$65-69$	51202	50902	102104
$70-74$	58279	62479	120758
$75+$	67978	86437	154415
TOTAL	5083537	5329011	10412548

Using the data in the table above, calculate the
(a) Dependence Ratio,
(b) Child-Woman Ratio,
(c) Sex-Ratio for children, and
(d) Sex-Ratio for the aged, i.e. from 65 years and above.
(e) Give one reason for the differences in the Sex-Ratio in (c) and (d) above.

A3. (a) Contrast the terms NRR and GRR.
(b) Prove that $N R R \leq G R R$.

A4. State any two types of census and briefly explain what is involved in each of the methods. Also state the advantages and disadvantages of each method.

SECTION B [60 marks]

Answer any THREE Questions being careful to number them B5 to B8.
B5. (a) The population of Zimbabwe in 2002 was 11.1 million and in 2012 was 13.1 million.
(i) Assuming that the population growth follows a geometric pattern, estimate the population size for the year 2016.
(ii) State two advantages and two disadvantages of the geometric model.
(b) Briefly describe each of the given models for estimating the population size and clearly outlining the strength and weaknesses of each model ,
(i) linear interpolation model,
(ii) logistic model, and
(iii) component model.

B6. The following data gives information on the fertility and survival rates for females in a certain country. The sex ratio at birth is 98 females to 100 males.

Age-group	f_{x} (daughters)	${ }_{5} L_{x} /{ }_{5} L_{0}$
$15-19$	0.095	0.919
$20-24$	0.152	0.901
$25-29$	0.161	0.878
$30-34$	0.110	0.769
$35-39$	0.103	0.732
$40-44$	0.085	0.706
$45-49$	0.045	0.006

Calculate the following:
(a) the mean age at child bearing,
(b) the median age at child bearing,
(c) Gross Reproductive Rate,
(d) Total Fertility Rate,
(e) Net Reproductive Rate,
(f) Mean length of a generation, and
(g) intrinsic rate of increase using Coale's approximation.

B7. (a) Given that the force of mortality μ_{x} is defined as $\mu_{x}=-\frac{1}{l_{x}} \frac{d l x}{d x}$, show that

$$
\begin{align*}
& \text { (i) } l_{x}=\int_{0}^{w-x} \mu_{x+t} \cdot l_{x-t} d t \tag{3}\\
& \text { (ii) } d_{x}=\int_{0}^{1} \mu_{x+t} \cdot l_{x+t} d t \tag{3}\\
& \text { (iii) }{ }_{n} q_{x}=\int_{0}^{n} \mu_{x+t \cdot t} p_{x} d t \tag{4}
\end{align*}
$$

(b) Suppose that the probability of having k sons follows the distribution,

$$
p_{k}=(0.2473)(0.4718)^{k-1}, \quad p_{0}=0.5318
$$

Determine the probability of extinction of the male line.

B8. The hypothetical replacement rates per annum of electric poles (i.e. the probability at the beginning of the year that a pole will in the next 12 months be in such a sate that it must be replaced) are given in the table below:

Year	Replacement rate
1	0.1
2	0.2
3	0.3
4	0.4
5	0.5
6	0.6
7	0.7
8	0.8
9	0.9
10	1.0

(a) Five hundred new poles have just been erected. Draw up a life table showing $l_{x}, p_{x}, q_{x}, d_{x}, L_{x}, T_{x}$ and e_{x}^{0}.
(b) What is the probability that a pole erected three years ago will last at least three more years?
(c) If it is the policy of the authority to paint poles as soon as they have been standing for five years, how much would it cost them a year at $\$ 15$ a pole to get a contractor to do the job?
(d) A firm supplies 200 poles per year is thinking of guaranteeing its poles for 2 years. If the cost of replacement is $\$ 35$ per pole, what is the expected cost per annum of the guarantee?

