

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF APPLIED SCIENCES & TECHNOLOGY

DEPARTMENT OF APPLIED STATISTICS

MODULE: ESTIMATION TECHNIQUES

CODE: ASTA 214

SESSIONAL EXAMINATIONS JUNE 2023

DURATION: 3 HOURS EXAMINER: MR M. TSODODO

INSTRUCTIONS

- 1. Answer **All** in Section A
- 2. Answer **two** questions in Section B.
- 3. Start a new question on a fresh page
- 4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator. Statistical tables

SECTION A

Question 1

- a) What properties do we consider in coming up with the best point estimators of population parameters. [3]
- b) Name any four methods that can be used as point estimators.
- c) Let x_1, \ldots, x_5 be the realised sample values of random samples X_1, \ldots, X_5 where the random variables are drawn from a population with mean μ . Find,
 - i) An estimator of μ .
 - ii) An estimate of μ .

[5]

[4]

Question 2

- a) In Signal Detection Theory explain any six of the following terms citing examples if necessary from a given scenario where cars are passing through traffic lights (robots).
 - i) Signal
 - ii) Noise
 - iii) Hits
 - iv) Misses
 - v) False alarms
 - vi) Correct Rejections
 - vii) Conservative method
 - viii) Liberal method [3]
- b) Illustrate in a table the use of the first six terms in a) above [4]
- c) Design a test that maximizes the probability of detection

$$P_D = P[X \in x_1; \theta = \theta_0]$$
^[4]

Question 3

Let X_1, X_2, \dots, X_n be a random variable from the Poisson distribution

$$p(x,\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}, x = 0, 1, 2, \dots$$

a)	Show that $E(X) = \lambda$.	[2]
b)	Find the estimator λ using maximum likelihood method.	[4]
c)	Using the Poisson distribution above prove that \overline{x}	
	i) Is an unbiased estimator of λ .	[2]
	ii) Is a consistent estimator of λ .	[4]
d)	Use the observed values $\{x_1, \dots, x_{12}\} = \{4, 2, 5, 8, 4, 4, 6, 3, 2, 4, 10, 2\}$ to find	an
	estimator of λ .	[2]

Question 4

- a) Let two variables X and Y be related through the model $Y_i = \beta_0 + \beta_1 X_1 + \epsilon$, where $\epsilon \sim N(0, \sigma^2)$
 - i) Find the least squares estimates of β_0 and β_1 [4,4]
 - ii) Show that $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators of β_0 and β_1 [5,5]

SECTION B

Question 5

a) The following amounts in millions of dollars represent a company's expenditure on salaries over a period of 7 years. Data for 2 years, namely the first and the seventh years, are missing.

Year (x)	1	2	3	4	5	6	7
Expenditure(y)	*	20	25	26	29	30	*

- i) Plot the data and comment on the main features of the data. [5]
- ii) Estimate the trend function by fitting the least squares line $U_{(x)} = a + bx$. Hence, find estimates of expenditure on salaries for the two years for which figures are missing. [10]
- b) Let X_1, \dots, \dots, X_n be a random sample from the geometric distribution

$$P(x,\theta) = \left(1 - \frac{1}{\theta}\right)\left(\frac{1}{\theta}\right)^x, \ x = 0, 1, 2, \dots \dots \dots$$

Find the least squares estimator for θ . [10]

Find the least squares estimator for θ .

c) Let X_1, \ldots, X_n be a random sample from a normal distribution $N(\theta, 1)$. Prove that $\hat{\theta} = \overline{X}$ is a consistent estimator of θ . [5]

Question 6

- a) State the Cramer-Rao Lower Bound Theorem and its conditions to hold [10]
- b) Let X_1, \dots, \dots, X_n be a random sample from an exponential distribution with parameter θ , that is $f_{x_i}(x_i; \theta) = \theta e^{-\theta x_i}$. Suggest a possible sufficient statistics. [5]
- c) Let X_1, \ldots, X_n be a random sample obtained from an exponential distribution with parameter θ .

i) Find the lower bound of the variance of unbiased estimators of

$$\tau(\theta) = \frac{1}{\theta} = E(X).$$
^[10]

ii) Is
$$\overline{X}$$
 an UMVUE of $E(X)$? [5]

Question 7

- a) Let X₁, X₂,..., X_n be a random sample from a Bernoulli probability mass function (p.m.f) given by f(x|θ)=θ^x(1 − θ)^{1−x} x = 0,1 Assume a uniform distribution for θ is p_θ(θ) =1, θ ∈ (0, 1). Find the Posterior Bayes Estimator of θ [10]
 b) Let X₁, ..., X_n be a random sample from a Poisson distribution with unknown
 - parameter θ , that is. $P(X = x) = f_X(x; \lambda) = \frac{e^{-\theta} \theta^x}{x!} \cdot I_{\{0,1,\dots\}}(x)$ where $\lambda \ge 0$.
 - i) Assuming a uniform prior density θ , find the posterior distribution of θ . [10]
 - ii) Assuming a gamma prior density for θ , Find the Bayes' estimator of θ [5] Find the posterior Bayes' estimator of $\tau(\theta) = P[X_i = 0]$ [5]

END OF EXAMINATION