MANICALAND STATE UNIVERSITY OF

APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES \& TECHNOLOGY

DEPARTMENT OF MINING \& MINERAL PROCESSING ENGINEERING DEPARTMENT OF CHEMICAL \& PROCESSING ENGINEERING DEPARTMENT OF METALLURGICAL ENGINEERING

MODULE: ENGINEERING MATHEMATICS IV

CODE: ENGT 224
SESSIONAL EXAMINATIONS
APRIL 2023

DURATION: 3 HOURS
EXAMINER: MR J. MANYEMBA

INSTRUCTIONS

1. Answer All in Section A
2. Answer Three questions in Section B.
3. Start a new question on a fresh page
4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator, Statistical Tables.

SECTION A [40 marks]

Answer ALL Questions being careful to number them A1 to A3.

A1. Define the following terms:
(a) Outlier,
(b) Residuals,
(c) serial correlation.
(d) multiple regression,
(e) coefficient of determination, and
(f) simple linear regression.

A2. Consider the data given in the table below.

x	8	13	18	6	30	22	32	40
y	28	37	63	24	101	80	115	156

(a) Construct a scatter plot and comment.
(b) Find the least squares regression line.
(c) Construct an ANOVA table and test appropriate hypotheses at the 5% level of significance.
(d) Find the 95% confidence interval for the estimate of y when $x=45$.

A3. State and describe any Three types of residuals.

SECTION B [60 marks]

Answer any THREE Questions being careful to number them B4 to B7.
B4. (a) Explain in detail any two methods that can be used to detect autocorrelation. [4]
(b) Explain any three effects of autocorrelation.
(c) Data on daily electricity consumption was collected over a period of 17 consecutive days. There were 5 independent variables and a regression model was fitted. Part of the results of the analysis is given below:

$$
n=17, \quad \sum_{t=1}^{17} e_{t}^{2}=722072.36, \quad \sum_{t=1}^{17}\left(e_{t}-e_{t-1}\right)^{2}=1865796.63
$$

Test for positive autocorrelation using the Durbin-Watson test.

B5. (a) Let $\mathbf{Y}=\mathbf{X} \beta+\mathbf{e}$ be a multiple regression model where \mathbf{Y} is the vector of dependent variables, \mathbf{X} is the matrix containing the independent variables and $\mathbf{e} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$ is the vector of the error terms.
(i) Show that the least squares estimator of β is $\hat{\beta}=\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{Y}$
(ii) Show that $\operatorname{Var}(\hat{\beta})=\sigma^{2}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}$
(b) Consider the following data. Using matrix method,

x_{i}	4	1	2	3	3	4
y_{i}	16	5	10	15	13	22

(i) Find $\mathbf{Y}^{t} \mathbf{Y}, \mathbf{X}^{t} \mathbf{X}$ and $\mathbf{X}^{t} \mathbf{Y}$
(ii) Find the least squares estimate of the model $\mathbf{Y}=\mathbf{X} \beta+\mathbf{e}$

B6. (a) Define multicollinearity.
(b) Give and briefly explain two methods of removing/reducing multicollinearity. [5]
(c) Briefly discuss the relative merits of backward elimination as used in multiple linear regression.
(d) Show that the Total Sum of Squares (SST) can be partitioned into Regression Sum of Squares (SSR) and Residual Sum of Squares (SSE).
(e) Show that the Residual Sum of Squares (SSE) can be partitioned into Pure Error Sum of Squares (SSPE) and Lack of Fit Sum of Squares (SSLF).

B7. (a) Briefly explain the forward selection procedure as used in multiple linear regression.
(b) Explain why a researcher would prefer the stepwise method over forward selection method in regression model building.
(c) Given a simple linear regression model $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$ where β_{0} and β_{1} are constants, ϵ_{i} represent the error term which is assumed to follow the $N\left(0, \sigma^{2}\right)$ distribution.
(i) State the least squares estimators of β_{0} and β_{1}.
(ii) Show that variance of $\hat{\beta}_{1}=\frac{\sigma^{2}}{S_{x x}}$.
(iii) Show that variance of $\hat{\beta}_{0}=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right]$.

