

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT OF MINING & MINERAL PROCESSING ENGINEERING DEPARTMENT OF CHEMICAL & PROCESSING ENGINEERING DEPARTMENT OF METALLUGICAL ENGINEERING

MODULE: ENGINEERING MATHEMATICS III

CODE: ENGT 214

SESSIONAL EXAMINATIONS June 2023

DURATION: 3 HOURS

EXAMINER: D. MHINI

INSTRUCTIONS

- 1. Answer **All** in Section A
- 2. Answer three questions in Section B.
- 3. Start a new question on a fresh page
- 4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator.

SECTION A: Answer ALL questions in this section [40]

A1. (a) Derive the central difference formula for second order derivatives are the associated error.	nd [7]
(b) Given that $f(x) = xe^x$ use the central difference formula with $h = 0.1; 0.01; 0.0001$ and 0.0001 to find the approximations to $f''(0.5)$. Compart the calculated value with the true value $f''(0.5) \approx 4.121803177$.	re [7]
A2.(a) Solve $y' = y - x$; $y(0) = 2$ using Runge Kutta order 1 method with $h = \frac{1}{4}$; $i = 0,1,2,3$ successively.	[10]
(b) Compare and contrast the single-step methods and multi-step methods explaining how the methods work.	[5]
(c) Define the following terms	
(i) backward error analysis	[2]
(ii) truncation error	[2]
(iii) absolute error	[2]
A3. (a) Define the interval of absolute convergence of <i>RK</i> methods for the term problem $y' = f(x, y); y(x_0) = y_0$.	est [3]
(b) Discuss the method of guaranteeing accuracy in the solution of an initial value problem using RK methods.	[2]

SECTION B: Answer ANY THREE questions in this section. [60]

B4. (a) Derive composite Trapezium's rule:

 $\int_{a}^{b} f(x)dx \approx \frac{1}{2}h[f_{0} + 2f_{1} + 2f_{2} + \dots + 2f_{n-1} + f_{n}] \text{ and show that the}$ associated truncation error is $-\frac{1}{12}\frac{b-a}{h^{2}}f^{(2)}(z).$ [14]

(b) Consider $f(x) = 2 + \sin(2\sqrt{x})$

(i) Show that the exact value of the definite integral $\int_{1}^{6} 2 + \sin(2\sqrt{x}) dx$ is 8.183479. [2]

(ii) Investigate the error when the composite trapezoidal rule is used over [1,6] with h = 0.5 [4]

B5. (a) Use Jacobi iterative method to solve the system of equation to 4 decimal place for i = 0; 1; ... 5.

$$5x + y + z = 10$$
$$x + 6y - 2z = 7$$
$$x - 3y + 7z = 16$$

Hence estimate the value of *x*, *y*, *z* to 1 s.f.

(b) The equation $x^4 + 2x^3 - x - 1 = 0$ has a root in the interval [0,1]. Use the Bisection method to approximate the root. [10]

[10]

B6 (a) Use Heun method to solve the IVP

$$y' = y - x$$
; $y(0) = 2$ on the interval [0; 1] with = 0.1, for $i = 0$; 1; 2. [10]

(b) (i) Sketch on a single diagram the graphs of y = Cosx and y = 2x for $0 \le x \le \frac{\pi}{2}$. Hence show that there is only 1 real root for the equation

$$Cosx = 2x.$$
 [2]

(ii) Show that the root lies between x = 0.2 and x = 0.6. [3]

(iii) Starting with $x_0 = 0.5$, use the Newton Raphson method to find the root correct to 4 decimal places. [5]

B7 (a) Use the Modified Euler's method to solve y'	$= y^2 + 1; y(0) = 0$ on the
interval [0,1] with $h = 0.1$; $i = 0,1,2$.	[8]

(b) Compute the IVP in (a) using RK4 and show which method is more accurate if the true value is 0.3093363. [10]

[2]

(c) Calculate the error on the methods used above.

END OF EXAMINATION PAPER