MANICALAND STATE UNIVERSITY OF

APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT OF MINING \& MINERAL PROCESSING ENGINEERING DEPARTMENT OF CHEMICAL \& PROCESSING ENGINEERING DEPARTMENT OF METALLUGICAL ENGINEERING

 MODULE: ENGINEERING MATHEMATICS IIICODE: ENGT 214
SESSIONAL EXAMINATIONS
June 2023

DURATION: 3 HOURS
EXAMINER: D. MHINI

INSTRUCTIONS

1. Answer All in Section A
2. Answer three questions in Section B.
3. Start a new question on a fresh page
4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator.

SECTION A: Answer ALL questions in this section [40]

A1. (a) Derive the central difference formula for second order derivatives and the associated error.
(b) Given that $f(x)=x e^{x}$ use the central difference formula with $h=$ $0.1 ; 0.01 ; 0.0001$ and 0.0001 to find the approximations to $f^{\prime \prime}(0.5)$. Compare the calculated value with the true value $f^{\prime \prime}(0.5) \approx 4.121803177$.

A2. (a) Solve $y^{\prime}=y-x ; y(0)=2$ using Runge Kutta order 1 method with $h=\frac{1}{4} ; i=0,1,2,3$ successively.
(b) Compare and contrast the single-step methods and multi-step methods explaining how the methods work.
(c) Define the following terms
(i) backward error analysis [2]
(ii) truncation error
(iii) absolute error

A3. (a) Define the interval of absolute convergence of $R K$ methods for the test problem $y^{\prime}=f(x, y) ; y\left(x_{0}\right)=y_{0}$.
(b) Discuss the method of guaranteeing accuracy in the solution of an initial value problem using $R K$ methods.

SECTION B: Answer ANY THREE questions in this section. [60]

B4. (a) Derive composite Trapezium's rule:
$\int_{a}^{b} f(x) d x \approx \frac{1}{2} h\left[f_{0}+2 f_{1}+2 f_{2}+\cdots+2 f_{n-1}+f_{n}\right]$ and show that the associated truncation error is $-\frac{1}{12} \frac{b-a}{h^{2}} f^{(2)}(z)$.
(b) Consider $f(x)=2+\sin (2 \sqrt{x})$
(i) Show that the exact value of the definite integral $\int_{1}^{6} 2+\sin (2 \sqrt{x}) d x$ is 8.183479 .
(ii) Investigate the error when the composite trapezoidal rule is used over[1,6] with $h=0.5$

B5. (a) Use Jacobi iterative method to solve the system of equation to 4 decimal place for $i=0 ; 1 ; \ldots 5$.

$$
\begin{aligned}
& 5 x+y+z=10 \\
& x+6 y-2 z=7 \\
& x-3 y+7 z=16
\end{aligned}
$$

Hence estimate the value of x, y, z to 1 s.f.
(b) The equation $x^{4}+2 x^{3}-x-1=0$ has a root in the interval [0,1]. Use the Bisection method to approximate the root.

B6 (a) Use Heun method to solve the IVP
$y^{\prime}=y-x ; y(0)=2$ on the interval $[0 ; 1]$ with $=0.1$, for $i=0 ; 1 ; 2$.
(b) (i) Sketch on a single diagram the graphs of $y=\operatorname{Cos} x$ and $y=2 x$ for $0 \leq x \leq \frac{\pi}{2}$. Hence show that there is only 1 real root for the equation $\operatorname{Cos} x=2 x$.
(ii) Show that the root lies between $x=0.2$ and $x=0.6$.
(iii) Starting with $x_{0}=0.5$, use the Newton Raphson method to find the root correct to 4 decimal places.

B7 (a) Use the Modified Euler's method to solve $y^{\prime}=y^{2}+1 ; y(0)=0$ on the interval [0,1] with $h=0.1 ; i=0,1,2$.
(b) Compute the IVP in (a) using $R K 4$ and show which method is more accurate if the true value is 0.3093363 .
(c) Calculate the error on the methods used above.

