MANICALAND STATE UNIVERSITY OF

APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES \& TECHNOLOGY

DEPARTMENT OF APPLIED STATISTICS

mODULE: ORDINARY DIFFERENTIAL EQUATIONS

CODE: ASTA 214
SESSIONAL EXAMINATIONS
APRIL 2023

DURATION: 3 HOURS
EXAMINER: MR M. TSODODO

INSTRUCTIONS

1. Answer All in Section A
2. Answer two questions in Section B.
3. Start a new question on a fresh page
4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator.

SECTION A (40 marks)

Question 1

a) Show that the following differential equation is exact and find its general solution.

$$
\begin{equation*}
(y \cos x+4 x) d x+(\sin x+2 y) d y=0 \tag{5}
\end{equation*}
$$

b) By finding an integrating factor, solve the initial value problem

$$
\begin{equation*}
\left(3 x^{2}+8 y\right) d y+2 x y d x=0, \quad y(0)=1 \tag{5}
\end{equation*}
$$

Question 2

Use the transformation $x y=t$ to solve the equation

$$
\begin{equation*}
\left(1+x^{2} y^{2}\right) y+(x y-1)^{2} x y^{\prime}=0 \tag{7}
\end{equation*}
$$

Question 3

Solve the Bernoulli equation

$$
\begin{equation*}
x y^{\prime}+y=x^{2} y^{2} \tag{6}
\end{equation*}
$$

Question 4

Use the method of reduction of order to find the general solution of the differential equation

$$
y^{\prime \prime}+\frac{2}{x} y^{\prime}-\frac{6}{x^{2}} y=0
$$

If we know $y_{1}=x^{2}$ is a solution

Question 5

Let $F(t)$ be a periodic function of period P, starting at $t=0$. If $L\{f(t)\}$ exists, show that it is given by $\frac{\int_{0}^{P} e^{-s t}}{1-e^{-s P}} F(t) d t$

Question 6

a) Define the terms ordinary and regular singular points in connection with a generic second order linear differential equation.
b) State Frobenius' Theorem for solution of differential equations about a regular singular point.

SECTION B (60 marks)

Question 7

a) Show that $x=0$ is a regular singular point of the equation

$$
\begin{equation*}
4 x y^{\prime \prime}+2 y^{\prime}+y=0 \tag{20}
\end{equation*}
$$

and obtain its solution near $x=0$.
b) Solve the differential equation

$$
\begin{equation*}
y^{\prime \prime}-4 y^{\prime}+4 y=(x+1) e^{2 x} \tag{10}
\end{equation*}
$$

Using the variation of parameters method

Question 8

a) Solve the differential equation

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y^{2}+2 x y}{x^{2}} \tag{8}
\end{equation*}
$$

b) Let $y_{1}(x)$ be a solution of the Ricatti equation

$$
y^{\prime}=a_{1}(x)+a_{2}(x) y+a_{3}(x) y^{2}
$$

Show that the transformation

$$
y=y_{1}+\frac{1}{u(x)}
$$

reduces the Ricatti equation to a linear equation in $u(x)$ of the form

$$
u^{\prime}(x)=-\left(a_{2}(x)+2 a_{3}(x) y_{1}\right) u(x)-a_{3}(x)
$$

Hence, solve the following equation
$y^{\prime}=\frac{2 \cos ^{2} x-\sin ^{2} x+y^{2}}{2 \cos x}, \quad y_{1}(x)=\sin x$
c) A certain radioactive material is known to decay at a rate proportional to the amount present and 0.1 percent of the original mass decayed after one week. Find an expression for the mass at time t .

Question 9

a) Derive a general expression for the Laplace transform of $\frac{d^{n} y}{d x^{n}}$.

Hence solve the following Laplace transform

$$
\begin{equation*}
y^{\prime \prime \prime}+y^{\prime}=e^{x}, \quad y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0 \tag{15}
\end{equation*}
$$

b)
i) Show that any Cauchy-Euler second order differential equation can be reduced to any equation with constant coefficients by means of the substitution

$$
\begin{equation*}
x=e^{t} \tag{8}
\end{equation*}
$$

ii) Hence or otherwise find the general solution of the Euler equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}-2 x y^{\prime}-4 y=0 \tag{7}
\end{equation*}
$$

