MANICALAND STATE UNIVERSITY OF

APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES AND TECHNOLOGY

DEPARTMENT OF APPLIED STATISTICS

MODULE: CALCULUS I
CODE: ASTA 102
\section*{SESSIONAL EXAMINATIONS} JUNE 2023
DURATION: 3 HOURS
EXAMINER: MR TSODODO

INSTRUCTIONS

1. Answer All in Section A
2. Answer three questions in Section B.
3. Start a new question on a fresh page
4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator.

SECTION A (40 marks)

Answer ALL Questions

A1. a) Differentiate $\frac{1}{x}$ from the first principals
b) For what values of x is each of the following functions continuous
(i) $f(x)=\frac{2 x-3}{(3 x+7)(x-4)}$
(ii) $f(x)=\frac{1+\cos x}{3+\sin x}$
(iii) $f(x)=\frac{x-|x|}{x}$

A2 Let $f(x)=\left\{\begin{array}{cc}\frac{|x-3|}{x-3} \\ 0 ; x=3 & ; x \neq 3\end{array}\right.$
(a) Graph the function $f(x)$
(b) Find the $\lim _{x \rightarrow 3^{+}} f(x)$
(c) Find the $\lim _{x \rightarrow 3^{-}} f(x)$
(d) Find the $\lim _{x \rightarrow 3} f(x)$

A3. (a). State the second fundamental theorem of calculus
(b). Find $f g(x)$ and $g f(x)$ in the following:
(i) $f(x)=x+2 \quad g(x)=x^{2}-4$
(ii) $f(x)=\frac{x-1}{x+1} \quad g(x)=\frac{1}{x}$
(c). You are told that $\pi=22 / 7$ is this true or false. Give reason for your answer

A4. Differentiate the following functions with respect to x
a) $f(x)=x^{2}-\frac{1}{\sqrt{x}}+\ln x$
b) $x^{2}-x y+y^{2}=0$
c) $x=\cos 2 t ; \quad y=\sin 2 t$

A5) Find the set of valves of x for which the following set of inequalities hold
(a) $2 x^{2}-3 x-5 \geq 0$
(b) $\frac{1}{x-2}>\frac{2}{x+3}$

SECTION B. (60 Marks)

Attempt three questions being careful to number them B6 to B9

B6.(a) Evaluate the following limits
i. $\lim _{n \rightarrow \infty} \frac{n^{3}+4 n-5}{n^{2}-1}$
ii. $\quad \lim _{n \rightarrow \infty}\left(\frac{2 n-7}{5 n+4}\right)^{4}$
iii. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$
iv. $\lim _{x \rightarrow 5} 3$
v. $\lim _{n \rightarrow \infty}(\sqrt{n+10}-\sqrt{n})$
(b)Solve the following equations
i. $\quad|3+2 x|=2|x+1|$
ii. $\quad \frac{2}{7 x}-\frac{4}{3 x}>1$

B7(a) Differentiate the following functions with respect to x
(i) $y=3 x^{2}+2 x+7+e^{3 x^{2}-3 x+6}$
(ii) $x=t-\frac{1}{t} \quad$ and $y=\frac{1}{t^{2}}$
(iii) $y=\frac{1}{x^{2}}$
b) Integrate the following functions with respect to x.
i) $\frac{\operatorname{Cos} x-\operatorname{Sin} x}{\sin x+\operatorname{Cos} x}$
ii) $3 e^{-3 x}-\frac{1}{2} e^{2 x}$
iii) $(3 x+5)^{5}$
iv) $\operatorname{Cos}(6-7 x)$

B8
a) Find the area of the bounded plane region R lying between the curves

$$
\begin{equation*}
y=x^{2}-2 x \text { and } y=4-x^{2} \tag{5}
\end{equation*}
$$

b) Given that $x=3(2 \theta-3 \operatorname{Sin} 2 \theta)$ and $y=3(1-\operatorname{Cos} 2 \theta)$

Find $\frac{d y}{d x}$
c) Find the equation of the tangent to the curve

$$
\begin{equation*}
3 x^{2}-7 y^{2}+4 x y-8 x=0 \text { at the point }(-1,1) \tag{5}
\end{equation*}
$$

d)
i. Define cosh x and sinhx in terms of exponentials.
ii. Using the definition in (i) above show that $\frac{d}{d x} \cosh (x)=\sinh (x)$

B 9.
a) Deduce the formula for the sum $\frac{1}{1.2}+\frac{1}{2.3}+\cdots+\frac{1}{n(n+1)}$ and prove it by induction
b)
i. Integrate $x^{2} e^{x}$ with respect to x
[3]
i. Express

$$
\frac{2 x-3}{x^{2}-5 x+6}
$$

in partial fractions hence or otherwise

$$
\begin{equation*}
\int_{0}^{1} \frac{2 x-3}{x^{2}-5 x+6} d x \tag{4,6}
\end{equation*}
$$

END OF QUESTION PAPER

