MANICALAND STATE UNIVERSITY OF

APPLIED SCIENCES

FACULTY OF ENGINEERING, APPLIED SCIENCES \& TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

MODULE: DISCRETE MATHEMATICS

CODE: BCOS 121
SESSIONAL EXAMINATIONS
APRIL 2023

DURATION: 3 HOURS
EXAMINER: D. MHINI

INSTRUCTIONS

1. Answer All in Section A
2. Answer three questions in Section B.
3. Start a new question on a fresh page
4. Total marks 100

Additional material(s): Non-programmable electronic scientific calculator.

SECTION A: Answer ALL in this section [40]

A1. (a) Prove that $2^{0}=1$
(b) Define a logical equivalence and show that
$p \rightarrow(q \wedge r) \equiv(p \rightarrow q) \wedge(p \rightarrow r)$
(c) Show that $[(p \rightarrow q) \wedge(p \rightarrow r)] \rightarrow(p \wedge r)$ is a Tautology

A2.(a) A license plate is to consist of three letters followed by two digits. How many different license plates are possible if the first letter must be a vowel (a, e, i, o, u) and repetition of letters is not permitted, but repetition of digits is permitted?
(b). Show that $\sqrt{3}$ is irrational.
(c). Present a direct proof: $2^{n} \leq n!\leq n^{n}$
[8]
A3 Consider each graph below. Which of them are traversable that is have Euler path? Which are Eulerian that is, have an Euler circuit? For those that do not, explain why?

(a)

(b)

(c)

A4. Discuss the validity of the following argument:
All graduates are educated.
Denis is a graduate.
Therefore. Denis is educated.

SECTION B: Answer THREE questions in this section [60]

B5. (a) Draw the logic circuit L with inputs A, B, C and output Y which corresponds to each Boolean expression:
(i) $\quad Y=A B C+A^{\prime} C^{\prime}+B^{\prime} C^{\prime}$
(ii) $Y=A B^{\prime} C+A B C^{\prime}+A B^{\prime} C$
(b)Negate each of the following statements
(i) $\exists x \forall y, p(x, y)$
(ii) $\exists x \forall y, p(x, y)$
(iii) $\exists y \exists x \forall z, p(x, y, z)$

B6. (a) Show that $11^{n+2}+12^{2 n+1}$ is divisible by 133 .
(b). Let $A=\{1,2\}$ construct that set $\rho(A) \times A$ where $\rho(A)$ is the power set of A .
(c). Let U be a set of positive integers not exceeding1000. Then $|U|=1000$. Find $|S|$ where S is the set of such integers which are not divisible by 3,5 or 7 . [7]

B7.(i) A Mutare City Council is responsible for maintaining the following network of roads. The number on each edge is the length of the road in kilometers.

(a) A Council worker has to inspect all the roads starting and finishing at A. Find the length of an optimal Chinese postman route.
(b) A Supervisor based at A, also wish to inspect all the roads. However, the supervisor lives at H and wishes to start his route at A and finish it at H . Find the length of an optimal Chinese postman route for the supervisor. [5]
(ii) (a) Simplfy $\frac{(n+2)!}{n}$
(b). Prove $\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r}$

B8. (i) Draw the graph G corresponding to each adjacency matrix.
(a) $A=\left[\begin{array}{lllll}0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0\end{array}\right]$
(b) $A=\left[\begin{array}{llll}1 & 3 & 0 & 0 \\ 3 & 0 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 0\end{array}\right]$
(ii) Prove the proposition that the sum of the first n positive integers is $\frac{1}{2} n(n+$

1) that is: $P(n): 1+2+\cdots+n=\frac{1}{2} n(n+1)$
(iii) Construct a spanning tree of the following graph G

END OF EXAMINATION PAPER

