

MANICALAND STATE UNIVERSITY

OF

APPLIED SCIENCES

FACULTY OF APPLIED SCIENCES & TECHNOLOGY

DEPARTMENT OF APPLIED STATISTICS

MODULE: HYPOTHESIS TESTING TECHNIQUES

CODE: ASTA213

SESSIONAL EXAMINATIONS

JUNE 2023

DURATION: 3 HOURS

EXAMINER: MRS S MANDIZVIDZA

INSTRUCTIONS

- 1. Answer **All** in Section A.
- 2. Answer three questions in Section B.
- 3. Start a new question on a fresh page.
- 4. Total marks: 100.

Additional material(s)

• Non-programmable electronic scientific calculator, List of formulae.

SECTION A [40 MARKS]

Answer ALL questions in this section

A 1	Define the following	
(a)	Sequential hypothesis testing	(2)
(b)	Hypothesis testing	(2)
A 2	Compare and contrast each of the following concepts	
(a)	Type I error(α) and Type II error(β)	(2)
(b)	One and Two Tailed Tests	(2)
(c)	Simple hypothesis versus composite hypothesis.	(2)
(d)	Simple hypothesis versus simple alternative.	(2)

A 3

Table below shows information for undergraduate and graduate students using face-to-face and online instruction method.

		Educa	tion level
		Undergraduate	Graduate students
Instructional preference	Face-to-face	20	35
	Online instructiony	40	5

Table 1: Students preference.

- (a) Using $\alpha = 0.05$ test if there an association between students preference for online or face-to-face instruction and their education level?. (7)
- (b) What conclusions are drawn?.

A 4 Given that $X_1, ..., X_n, \sim N(\theta, 100)$ that is

$$f(x/(\sigma,\mu)) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Also $H_0: \theta_0 = 75$ and $H_a: \theta_1 = 78$, $\alpha = 0.1$, $\beta = 0.1$.

Page 2 of 6

(2)

- (a) Find the sequential probability ratio test.
- (b) Give a conclusion.

A 5

The marks obtained in a large public examination by 500 candidates from one centre and 671 candidates from another centre were summarised as Table 4.

Mark Range	10-19	20-29	30-39	40-49	50-59	60-69	70-79
Number of							
candidates	19	50	47	125	132	100	27
from centre 1							
Number of							
candidates	30	60	102	140	189	89	61
from centre 2							

Table 2: Marks obtained in a public examination

- (a) Test at 5% significance level whether the distribution of the marks from the two centres (7) follow the same normal distribution.
- (b) State the type of test that you have conducted.

(1)

(8)

(2)

SECTION B [60 MARKS]

Answer any THREE questions in this section

A 6 A company has to choose among three health insurance plans. The opinions of a random sample of 500 employees are shown in Table 2. Management wishes to know whether the preference for plans is independent of job classification.

		Healt	h insur	ance plans
		1	2	3
Job Classification	Salared worker	160	140	40
	Hourly	40	60	60

Table 3:	Health	insurance	plans.
----------	--------	-----------	--------

(a) Carry out a hypothesis test using $\alpha = 0.05$.

A manufacturer claims that the thickness of the spearmint gum it produces is 7.5 centimeters. A quality control specialist regularly checks this claim. On one production run, he took a random sample of n = 10 pieces of gum and measured their thickness. He obtained:

- (b) Test at a significance level $\alpha = 0.05$ whether the manufacturer claims is true. (10)
- (c) What conclusions are drawn?.

A 7

Given that $X_1, ..., X_n$ is a random sample of size *n* from an exponential distribution

$$f(x/\theta) = \frac{1}{\theta}e^{\frac{-x}{\theta}}$$

- (a) Conduct the simple hypothesis testing.
- (b) Show that the likelihood ratio test of an exponential distribution is equivalent to the (6) chisquare test.

Given that $H_0: \mu = 2$ and $H_a: \mu = 1$, with a random sample of size n = 5 from an exponential distribution.

(c) Perform the likelihood ratio test at a significance level of $\alpha = 0.05$. (7)

(8)

(2)

(7)

A 8 Two mark'smen fire five shots at a time at a target and record the numbers of bull's eyes hit, X. After a series of 100 such trials for each mark'smen, the scores were analysed giving the following results in Table 1.

X	0	1	2	3	4	5
Marksman1 _{ij}	6	31	36	15	8	4
Marksman2 _{ij}	2	25	29	20	16	8

Table 4: Marksman

(a) Do you think the distribution of X for both mark'smen is the same?.	(9)
---	-----

(b) State the type of test that you have conducted.

A manufacturer of ball pens claims that a certain pen he manufactures has a mean writing life of 400 pages with a standard deviation of 20 pages. A purchasing agent selects a sample of 100 pens and puts them for test. The mean writing life for the sample was 390 pages.

- (c) Should the purchasing agent reject the manufactures claim at 1% level? (8)
- (d) What conclusions are drawn?

A 9

The number of defects in printed boards is hypothesized to follow a Poisson distribution. A random sample of n = 60 printed boards was collected, and the following Table 5 shows the number of defects observed.

Number of defects	Observed frequency
0	32
1	15
2	9
3	2

Table 5: Printed boards

- (a) Test at a significance level $\alpha = 0.05$.
- (b) What conclusions are drawn?.

Given that $X_1, ..., X_n$ is a random sample of size *n* from a distribution

$$f(x/\theta) = \theta^x (1-\theta)^{1-x}$$

,
$$H_0: \theta_0 = \frac{1}{3}$$
 and $H_a: \theta_1 = \frac{2}{3}, \alpha = 0.05, \beta = 0.05.$

(c) Find the sequential probability ratio test.

(10)

(8)

(2)

(1)

(2)