

MANICALAND STATE UNIVERSITY

OF APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: ENVIRONMENTAL POLLUTION CONTROL

CODE: HCHE525

SESSIONAL EXAMINATIONS DECEMBER 2022

DURATION: 3 HOURS

EXAMINER: K NYENYAYI (MR)

INSTRUCTIONS

- 1. Answer All in Section A
- 2. Answer three questions in Section B.
- 3. Start a new question on a fresh page
- 4. Total marks 100

Additional material(s): Graph Book, Calculator.

Page 1 of 5

SECTION A

QUESTION 1

a) Table 1 shows selected physical and chemical characteristics of waste from wet scrubber of an incinerator in b), and their permissible limit.

Table	1
-------	---

Value	Permissible limit (SI 6 of 2007)			
	Blue	Green	Yellow	Red
54	< 35	< 40	≤ 40	≤45
5350	≤ 500	≤1500	≤ 2000	
3.1	6 - 9	5 - 6	4 - 5	0 - 4
400	≤ 60	\leq 90	≤150	≤ 200
1.5	≤ 0.05	≤ 0.1	≤ 0.2	≤ 0.5
3	≤ 0.01	≤ 0.04	≤ 0.06	≤ 0.1
9950	-	-	-	-
	54 5350 3.1 400 1.5 3	Blue 54 < 35	BlueGreen 54 < 35	BlueGreenYellow 54 <35 <40 ≤ 40 5350 ≤ 500 ≤ 1500 ≤ 2000 3.1 $6 - 9$ $5 - 6$ $4 - 5$ 400 ≤ 60 ≤ 90 ≤ 150 1.5 ≤ 0.05 ≤ 0.1 ≤ 0.2 3 ≤ 0.01 ≤ 0.04 ≤ 0.06

- State two (2) most likely characteristics of this waste, for purposes of hazardous waste classification. [2]
- ii. Justify each of the two (2) characteristics stated in a).
- b) For the active treatment of this waste state and justify:
 - (i) One (1) form of chemical treatment [4]

[2]

- (ii) One (1) form of physical treatment [4]
- c) Gaseous emissions from a cylindrical smokestack of the incinerator in a) was further analysed by gas chromatography and gave 6.5 mg/ml of acid gas (anhydrous HCl). The smokestack had an internal diameter of 0.9 m and a gas exit velocity is 8 m/s. Given that the gas had an average temperature of 42 °C at

0.8 atmospheres, and that the incinerator runs for a total of 9 hours per day: Calculate the total amount of HCl emitted from the smokestack in t/day. [8]

QUESTION 2

- Outline five of the key system requirements for a bioreactor landfill. [5] a)
- Explain the energy recovery principle behind thermal treatment of waste. [8] b)
- The anaerobic digestion of 500 kg of sewage sludge (dry weight) changed its c) chemical oxygen demand from the initial 600 g/kg to 350 g/kg of sludge.
 - Calculate the ultimate CH₄ yield in m3 under normal conditions (0.9 i. atmospheres and 25 °C). [Relative atomic masses: C=12; H=1, O=16 [5]
 - ii. State two (2) other parameters that are used to narrow down the range of potential CH₄ producing wastes. [2]

SECTION B

QUESTION 3

- Name any five (5) parameters regulated under EMA for municipal wasterwater a) (sewage) discharges. [5]
- b) Three physical treatment devices are employed in municipal wastewater treatment control. Outline these control devices and briefly describe each of [9] these devices.
- c) List three (3) categories of industrial wasterwater (effluent) treatment. Provide examples from each category. [6]

QUESTION 4

- a) Define and discuss the following strategies as used in efforts to reduce the ecological & environmental impacts of industrial activities.
 - i. Clean production
 - ii. Source reduction
 - iii. Life Cycle Design
- b) List and justify parameters that you would consider useful for characterization of the following wastes for biological treatment;

[6]

[6]

- i. Sewage sludge
- ii. Citrus waste
- c) Using relevant examples, give comparison between *suspended* and *attached* growth media as applied in biological wastewater treatment.
 [8]

QUESTION 5

- a) Flue gases from both mobile and immobile sources must be subjected to:
 - Cooling or heat recovery
 - Dust separation
 - Scrubbing
 - Finishing treatments

Giving examples of air pollution control devices or otherwise, briefly explain each of the above processes and how they can be achieved. [20]

QUESTION 6

a) Briefly explain, with the aid of a flow diagram or otherwise, the unit operations Page 4 of 5 and processes in a typical surface water treatment plant for purposes of urban drinking water supply. [10]

b) The results of a chlorine demand test on a raw water at 20 °C are given in following Table 2:

Table	2
	_

Chlorine Dosage	Residual chlorine after 10				
(mg/L)	minutes of contact (mg/L)				
0.2	0.19				
0.4	0.37				
0.6	0.51				
0.8	0.50				
1.0	0.20				
1.2	0.40				
1.4	0.60				
1.6	0.80				
	(mg/L) 0.2 0.4 0.6 0.8 1.0 1.2				

i. Sketch the chlorine demand curve. [6]

[2]

[2]

- ii. What is the breakpoint chlorine dosage?
- iii. What is the chlorine demand at a chlorine dosage of 1.2 mg/L?

END OF EXAMINATION