

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: PHYSICAL CHEMISTRY FOR ENGINEERS

CODE: ENGT 104

SESSIONAL EXAMINATIONS
NOVEMBER 2022

DURATION: 3 HOURS
EXAMINER: MR M. MAPOSA

QUESTION 1

In this question you can use the following constants:

Planck's Constant $=6.63 \times 10^{-34} \mathrm{Js}$, Electron mass $=9.11 \times 10^{-31} \mathbf{~ k g , ~} \mathbf{1} \mathbf{e V}=\mathbf{1 . 6 0 2}$

$\times 10^{-19} \mathrm{~J}$, speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{S}$
a) Explain the following observations made during a photoelectric investigation
(i) electrons ejected from the same metal surface during photoelectric emission have different kinetic energies
(ii) the intensity of light incident on a metal surface increases the number of ejected electrons
(iii) frequency of the incident light increases the kinetic energy of the ejected electrons
(iv) only light of a certain minimum frequency can result in photoelectric emission
(v) different metals have different work functions
b) De Broglie is one of the scientists who contributed significantly to the idea of wave particle duality. He made it possible to calculate the wavelength of any moving object.
i) Give the De Broglie expression which relates wave length to plank's constant, mass and velocity of a moving object.
ii) Calculate the de Broglie wavelength of

1 a lorry of mass 3500 kg traveling at a speed of $30 \mathrm{~m} / \mathrm{s}$
2 An electron travelling at a speed of $100 \mathrm{~m} / \mathrm{s}$
iii) Explain fully why the wavelength of the lorry is insignificant to consider
iv) At what velocity would an iron ball of mass 6.5 kg move so as to have the same wavelength as an electron travelling at $100 \mathrm{~m} / \mathrm{s}$

QUESTION 2

a) Draw a schematic diagram to show the components of a single beam UVVIS spectrometer
b) State any two strengths and one limitation of UV-VIS spectroscopy
c) Beer's law can be used to evaluate concentration from absorbance of an analyte.
i) State Beer's law and highlight the significance of each term
ii) The calibration curve used to analyse the concentration of a pollutant in the effluent had a line of best fit represented by the equation; $\mathbf{y}=\mathbf{0 . 9 9 8} \mathbf{x}+\mathbf{0 . 0 1}$. Calculate the concentration of the pollutant in an effluent sample which gave an absorbance reading of 0.06 .
iii) In another different experiment, phenol concentration was analysed using UV-VIS. A sample of concentration 0.05 moldm $^{-3}$ gave an absorbance value of 412 using cells of pathlength one centimeter. Deduce a value for the molar absorptivity ((\mathbf{E}) with correct units.
d) CO_{2} is an inactive molecule.
i) Explain fully the meaning of this statement
ii) Calculate the degrees of freedom for the vibrations of the following molecules 1. CO_{2}
2. SO_{2}
$3 \quad \mathrm{CH}_{3} \mathrm{CH}_{3}$

QUESTION 3

(a) With the aid of examples distinguish between unimolecular and bimolecular elementary steps of a reaction mechanism. Show clearly how such steps are related to the rate law of a reaction.
(b) The following data was collected from a series of experiments carried out on the reaction: $\mathbf{2 A} \rightarrow \mathbf{B}+\mathbf{C}$

Rate $/ \mathrm{mol} /$ $\mathrm{dm}^{3} \mathrm{~s}^{-1}$	0.0010	0.0019	0.0039	0.0081	0.0159	0.0318
Conc of $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$	0.025	0.050	0.100	0.200	0.400	0.800

i) Plot a graph of rate of reaction against concentration of A
ii) Deduce the order of reaction with respect to the concentration of A and the rate equation
iii) Use your graph to find the rate constant of the reaction
iv) Determine the half-life of the reaction
v) Predict the rate of reaction when the concentration of A was lowered to $0.001 \mathrm{moldm}^{-3}$
(c) Give the Arrhenius equation in natural log form stating the units of each term in the equation
(d) The rate constant for the decomposition of compound \mathbf{A} was determined at two different temperatures; $\mathbf{2 A} \rightarrow \mathbf{B}+\mathbf{C}$. At $600 \mathrm{~K} k_{1}=1.95 \times 10^{-7} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-}$. At $700 \mathrm{~K} k_{2}=2.01 \times 10^{-6} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. Determine the value of the activation energy of the reaction

QUESTION 4

a) Write a brief summary on each of the following
i) Collision theory
ii) Lindeman theory
iii) Steady state approximation
b) The following mechanism describes a reaction in which an inorganic substance $\mathrm{X}_{2} \mathrm{Y}_{5}$ decomposes to form Y_{2}, and XY_{2}

$$
\mathrm{X}_{2} \mathrm{Y}_{5} \underset{k_{b}}{\stackrel{k_{f}}{\rightleftarrows}} \mathrm{XY}_{2}+\mathrm{XY}_{3} \quad \mathrm{XY}_{2}+\mathrm{XY}_{3} \xrightarrow{k_{2}} \mathrm{XY}_{2}+\mathrm{XY}+\mathrm{Y}_{2} \quad \mathrm{XY}_{3}+\mathrm{XY} \xrightarrow{k_{3}} 2 \mathrm{XY}_{2}
$$

Use steady state approximation to deduce the expression for the
i) Steady state concentration of the intermediate $X Y$
ii) Steady state concentration of the intermediate $X Y_{3}$
iii) Rate of the overall reaction in terms of change in concentration of $X_{2} Y_{5}$
iv) Overall rate constant \mathbf{K} in terms of $k_{f}, k_{b} k_{2}$ and k_{b}
v) Deduce the overall rate constant \mathbf{K}, when k_{b} is many times smaller than k_{2}
vi) Deduce the overall rate constant \mathbf{K}, when k_{b} is many times greater than k_{2}

END OF EXAMINATION

