

# MANICALAND STATE UNIVERSITY

## **OF APPLIED SCIENCES**

## FACULTY OF ENGINEERING

### DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: FLUID SOLID SYSTEMS/PARTICULATE TECHNOLOGY

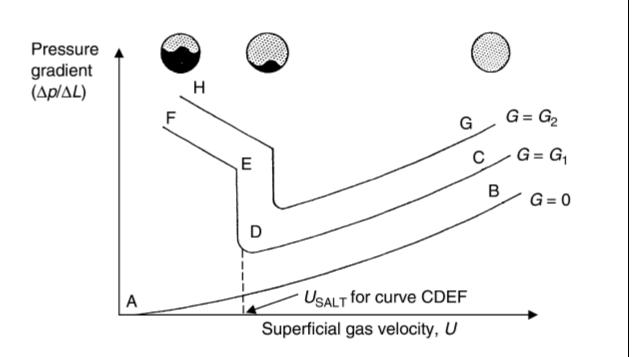
CODE: CHEP 313/HCHE 325

SESSIONAL EXAMINATIONS NOVEMBER 2022

**DURATION: 3 HOURS** 

EXAMINER: C. MUHEZWA

### INSTRUCTIONS


- 1. Answer All questions.
- 2. Start a new question on a fresh page
- 3. Total marks 100

Additional material(s): Graph paper, Calculator

Page 1 of 6

| QUESTION 1                                                                                  |                                                                                              |                                                                 |      |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------|--|
| a.                                                                                          | a. Outline the <b>three</b> most important characteristics of an individual particle. [3]    |                                                                 |      |  |
| b.                                                                                          | . Explain the meaning of the following terms as they are used in particle                    |                                                                 |      |  |
|                                                                                             | technology:                                                                                  |                                                                 |      |  |
|                                                                                             | i.                                                                                           | Surface diameter,                                               |      |  |
|                                                                                             | ii.                                                                                          | Surface-to-volume diameter,                                     |      |  |
|                                                                                             | iii.                                                                                         | Martin's diameter,                                              |      |  |
|                                                                                             | iv.                                                                                          | Free falling diameter.                                          | [4]  |  |
| c. A solid sample from an industrial plant has cubic particles with average edge            |                                                                                              |                                                                 |      |  |
|                                                                                             | lengt                                                                                        | h of 4.4 μm. Determine the                                      |      |  |
|                                                                                             | i.                                                                                           | volume-equivalent sphere diameter (Dvolume)                     | [3]  |  |
|                                                                                             | ii.                                                                                          | surface-equivalent sphere diameter $(D_{surface})$              | [3]  |  |
|                                                                                             | iii.                                                                                         | volume-surface equivalent sphere diameter (Dsv) of the partcles | [2]  |  |
| d. Derive from first principles, the terminal falling velocity of a particle of             |                                                                                              |                                                                 |      |  |
| density $\rho_p$ in a fluid of density $\rho_f$ and viscosity $\mu$ . Assume the particle's |                                                                                              |                                                                 |      |  |
|                                                                                             | motio                                                                                        | on is under gravity and is in the Stoke's region.               | [10] |  |
| <b>QUESTION 2</b>                                                                           |                                                                                              |                                                                 |      |  |
| a.                                                                                          | What                                                                                         | t is meant by                                                   |      |  |
|                                                                                             | i.                                                                                           | dense phase pneumatic conveying                                 | [3]  |  |
|                                                                                             | ii.                                                                                          | saltation velocity                                              | [2]  |  |
|                                                                                             | iii.                                                                                         | choking velocity                                                | [2]  |  |
| b.                                                                                          | State                                                                                        | four examples of particulate solids that can be transported by  |      |  |
|                                                                                             | pneu                                                                                         | matic conveying.                                                | [4]  |  |
| c.                                                                                          | c. The general relationship between gas velocity and pressure gradient $\Delta P / \Delta L$ |                                                                 |      |  |
|                                                                                             | for a horizontal transport line is shown in Fig 1. Line AB represents the                    |                                                                 |      |  |
|                                                                                             |                                                                                              |                                                                 |      |  |
|                                                                                             |                                                                                              |                                                                 |      |  |

curve obtained for gas only in the line, CDEF for a solids flux,  $G_1$ , and curve GH for a higher solids feed rate,  $G_2$ .



#### Fig. 1: Phase diagram for dilute phase horizontal pneumatic transport

| i                 | . Describe and explain what happens if the gas velocity is reduced whils     | t   |  |  |
|-------------------|------------------------------------------------------------------------------|-----|--|--|
|                   | solids feed rate is kept constant at G1                                      | [8] |  |  |
| ii                | . Explain the shape of the graph when $G = 0$                                | [3] |  |  |
| d.                | d. What are the advantages of pneumatic conveying over mechanical conveying  |     |  |  |
|                   | in particulate technology?                                                   | [3] |  |  |
| <b>QUESTION 3</b> |                                                                              |     |  |  |
| a.                | Describe the principle behind the <i>elutriation</i> method of particle size |     |  |  |
|                   | measurement.                                                                 | [4] |  |  |
| b.                | What are the assumptions made in the sedimentation method of particle si     | ze  |  |  |
|                   | measurement?                                                                 | [3] |  |  |
|                   |                                                                              |     |  |  |

| c. | Crystalline fertiliser solid particles are immersed in a liquid solvent of viscos                       | sity |  |  |  |
|----|---------------------------------------------------------------------------------------------------------|------|--|--|--|
|    | 10 Pa s, and density 60 kg/dm <sup>3</sup> . The density of the solid particles is 53 kg/m <sup>3</sup> |      |  |  |  |
|    | and their final settling velocity 5.3 m/s.                                                              |      |  |  |  |
|    | i. What is meant by the <i>'final settling velocity'</i>                                                | [2]  |  |  |  |
|    | ii. Determine the equivalent Stokes diameter $(D_s)$ of the fertiliser particle                         | es?  |  |  |  |
|    | Assume Stoke's law apply.                                                                               | [4]  |  |  |  |
| d. | Explain the need for particle size reduction in particulate technology                                  | [2]  |  |  |  |
| e. | State Rittinger's law of the energy needed for particle size reduction                                  | [2]  |  |  |  |
| f. | A material is crushed in a Blake jaw crusher such that the average size of                              |      |  |  |  |
|    | particle is reduced from 40 mm to 10 mm with the consumption of energy of                               |      |  |  |  |
|    | 13.0 kW/(kg/s). What would be the consumption of energy needed to crush                                 |      |  |  |  |
|    | the same material of average size 85 mm to an average size of 15 mm:                                    |      |  |  |  |
|    | i. assuming Rittinger's law applies?                                                                    | [3]  |  |  |  |
|    | ii. assuming Kick's law applies?                                                                        | [3]  |  |  |  |
| g. | What are the factors that affect the choice of machine selected for a particular                        | lar  |  |  |  |
|    | grinding operation?                                                                                     | [2]  |  |  |  |
|    | QUESTION 4                                                                                              |      |  |  |  |
| a. | Explain what is meant by in situ sampling                                                               | [2]  |  |  |  |
| b. | What are the advantages of <i>in situ</i> sampling?                                                     | [3]  |  |  |  |
| c. |                                                                                                         |      |  |  |  |
|    |                                                                                                         | [4]  |  |  |  |
| d. | Table 4.1 shows results of a grain size sieve analysis done on brown clayey                             | v to |  |  |  |
|    | silty sand, trace fine gravel.                                                                          |      |  |  |  |
|    |                                                                                                         |      |  |  |  |
|    |                                                                                                         |      |  |  |  |
|    |                                                                                                         |      |  |  |  |

| Sieve<br>Number | Diameter<br>(mm) | Mass of<br>Empty<br>Sieve (g) | Mass of<br>Sieve+Soil<br>Retained (g) | Soil<br>Retained<br>(g) | Percent<br>Retained | Percen<br>Passing |
|-----------------|------------------|-------------------------------|---------------------------------------|-------------------------|---------------------|-------------------|
| 4               | 4.75             | 116.23                        | 166.13                                | 49.9                    | 9.5                 | 90.5              |
| 10              | 2.0              | 99.2 <del>7</del>             | 135.77                                | 36.5                    | 7.0                 | 83.5              |
| 20              | 0.84             | 97.58                         | 139.68                                | 42.1                    | 8.0                 | 75.5              |
| 40              | 0.425            | 98.96                         | 138.96                                | 40.0                    | 7.6                 | 67.8              |
| 60              | 0.25             | 91.46                         | 114.46                                | 23.0                    | 4.4                 | 63.4              |
| 140             | 0.106            | 93.15                         | 184.15                                | 91.0                    | 17.4                | 46.1              |
| 200             | 0.075            | 90.92                         | 101.12                                | 10.2                    | 1.9                 | 44.1              |
| Pan             |                  | 70.19                         | 301.19                                | 231.0                   | 44.1                | 0.0               |
|                 |                  |                               | Total Weight=                         | 523. <del>7</del>       |                     | 1                 |

i. Construct a cumulative plot showing particle size distribution curve.

|      |                                                                 | [8] |
|------|-----------------------------------------------------------------|-----|
| ii.  | Determine D <sub>10</sub> ; D <sub>50</sub> and D <sub>90</sub> | [3] |
| iii. | Hence determine the span of the distribution                    | [3] |
| iv.  | How are the particles from the bottom pan characterized?        | [1] |
| v.   | Describe any source of error in the sieving experiment          | [1] |

#### **END OF EXAMINATION**

Page 6 of 6