

MANICALAND STATE UNIVERSITY

OF APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: ANALYTICAL CHEMISTRY

CODE: CHEP 226

SESSIONAL EXAMINATIONS DECEMBER 2022

DURATION: 3 HOURS

EXAMINER: MR M MAPOSA

INSTRUCTIONS

- 1. Answer Any four questions in this question paper
- 2. All questions carry the same number of marks.
- 3. Start each question on a fresh page
- 4. Total marks 100

Additional material: Data booklet Statistics tables

QUESTION 1

a)	Write	brief	notes	to	distinguish	between	the	following	analytical	chemistry
	terms									

[6]

[6]

i) Error and bias

- *ii) Precision and accuracy*
- iii) Signal and noise
- b) Describe fully the circumstances which may compel an analyst to
 - *i) calibrate the instrument of measurement*
 - *ii) employ internal calibration method*
 - iii) validate an analytical method

c) The following sets of results were obtained by two analysts **A** and **B** on water hardness of a sample of borehole water

B [Ca ⁺²] /ppm	10.2	10.4	10.3	10.3	10.5	10.4	10.0	
A [Ca ⁺²]/ppm	10.1	10.0	10.1	10.3	10.3	10.2	10.1	10.4

- i) Find the mean, median, mode, range, standard deviation, relative standard deviation and variance for each set of data.
- ii) Identify the analyst who produced more precise results. Give reasons for your answer
- iii) Using an appropriate test determine if there any significant difference between the means of the two sets of data [13]

QUESTION 2

- a) Describe precisely, the basic principle of gravimetric analysis. [3]
- b) Give any **two** advantages and **one** disadvantage of gravimetric analysis. [3]
- c) Outline a flame based experimental procedure which can be used to approximate the amount of calcium carbonate (CaCO₃) in a mixture of calcium

Page 2 of 6

carbonate (CaCO₃) and sodium chloride (NaCl). Your answer should include the materials used, reactions taking place and the measurements you would take. [6]

- d) A sample of manganese ore weighing 1.35 grams was heated in an excess solution of nitric acid to dissolve manganese ion producing manganese (III) nitrate (Mn(NO₃)₃). After adjusting the acidity of the solution, hydrogen sulfide (H₂S) gas was bubbled into the solution producing 0.32 grams of manganese (III) sulfide (Mn₂S₃). Given that manganese exists mainly as manganese (III) oxide, (Mn₂O₃) in the ore.
 - i) Explain why manganese ore dissolves in dilute nitric acid
 - By means of an equation, show the main reaction in the solubility of manganese ore in dilute nitric acid.
 - iii) Explain the need for excess nitric acid solution during the heating stage
 - iv) Determine the percentage of manganese in the ore sample?
 - v) Given that the actual percentage of manganese in the ore was 16 %, calculate percentage yield and percentage error of this analysis
 - vi) Give any **two** sources of error in this analysis [13]

QUESTION 3

- (a) A metal X forms a hydroxide, $X(OH)_2$ and a carbonate XCO_3 .
 - i) Give the charge on the X ion in the ionic compounds above
 - ii) At 25 °C, a saturated solution of $X(OH)_2$ has a pH of 10.2, calculate the molar concentration of OH⁻(*aq*) in the saturated solution.
 - iii) Calculate the value of the solubility product, Ksp, for X(OH)₂ at 25 °C

[8]

b) The metal carbonate, XCO₃ has a solubility product, K_{sp} , of 8.35×10^{-16} mol²dm⁻⁶ at 25°C.

Page 3 of 6

- Find a value for the molar concentration of the saturated solution of XCO₃
- Using your answer to b(i) and a(ii) select between X(OH)₂ and XCO₃, the compound with greater molar solubility in water at 25 °C. Justify your answer
- iii) Calculate the solubility of XCO_3 in 0.1 mol dm⁻³ sodium carbonate at $25 \ ^{\circ}C$ [9]
- c) Nernst equation is an important tool in potentiometry
 - Give the Nernst equation for the determination of cell potential at 298
 K
 - ii) Suggest the significance of Nernst equation in electrochemistry
 - iii) A zinc-lead cell has an overall equation: $Zn_{(s)} + Pb^{2+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + Pb_{(s)}$ Calculate the standard cell potential of the system
 - iv) Calculate the cell potential when 0.1 moldm⁻³ Zn^{2+} and 0,15 moldm⁻³ Pb²⁺ are the electrolytes at 30 °C [8]

QUESTION 4

- a) Epsom salt is hydrated magnesium sulphate (MgSO4.nH₂O). The percentage by mass of water of crystallisation and the value of n were determined using gravimetric methods. 200 g sample of Epsom salt was heated in an oven at a constant temperature and its mass decreased to a constant mass of 97.8 g. Calculate
 - i) the percentage by mass of water of crystallisation in Epsom salt
 - ii) the value of *n*, the number of moles of water of crystallisation per mole of Epsom salt. [7]
- b) EDTA titration is a method which can be used to measure the quantify of magnesium in a pack of Epsom. A sample of Epsom Salt of mass 0.85 g was

Page 4 of 6

measured and dissolved uniformly in distilled water to make 250 cm³ of solution. 25 cm³ portions of the resulting solution were titrated using a 0.010 moldm⁻³ solution of EDTA using eriochrome black as an indicator. It was found that 30.50 cm³ (0.0305 dm³) of 0.01000 moldm⁻³ EDTA were required to reach end point. Calculate

- i) the number of moles of magnesium ions in the 25 ml volume of solution
- ii) concentration of magnesium ions in the solution in ppm
- iii) percentage by mass (% w / w) of the magnesium in the pack of Epsom salt.
- c) i) Give any two disadvantages associated with the use of hard water
 - ii) Outline the methods used to reduce temporary and permanent waterhardness [6]

QUESTION 5

- (a) Volhard and Mohr methods are titration techniques for the determination of chloride ion concentration in an unknown. Give a description of each of the techniques, highlighting the reagents used, procedure, equations of reactions occurring during each analysis and indicators used.
- (b) Mohr method is a direct titration method while Volhard method is a back titration method.
 - i) Distinguish clearly between direct and back titration.
 - ii) Under what circumstances would back titration be preferred instead of direct titration? [5]
- c) Two samples from the same crude industrial effluent were known each to contain 30 g of a phenol per 100 cm³ of aqueous solution. During phenol recovery experiments, the samples were treated with ether in two different ways to extract the phenol, sample one: 100 cm³ of ether once and sample two; 50 cm³ of ether

Page 5 of 6

twice at room temperature. Given that the partition coefficient is 40,

i) Calculate the mass of phenol extracted in each case

ii) Calculate the percentage recovery in each case

- d) Give any two applications of
 - i) *GLC*
 - ii) HPLC
 - iii) *TLC*

[6]

[6]

END OF EXAMINATION