

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING

CHEMICAL AND PROCESSING ENGINEERING DEPARTMENT

REACTOR ANALYSIS AND DESIGN II/CHEMICAL REACTION ENGINEERING II CODE: CHEP 224/HCHE 312

SESSIONAL EXAMINATIONS

DECEMBER 2022

DURATION: 3 HOURS

EXAMINER: DR M. CHIGONDO

INSTRUCTIONS

- 1. Answer all questions
- 2. Each question carries 25 marks
- 3. Total marks 100

Page 1 of 8

Question one

(a) For the gas-liquid reaction: $A(l \rightarrow g) + B(l) \rightarrow R(l)$ with C_{Ai} less than C_{Bi} sketch the concentration profiles of *A* and *B* in liquid film and bulk for the following situations, indicating where the reaction takes place

- (i) instantaneous reaction
- (ii) Fast reaction, such that Hatta 's modulus is greater than 2
- (iii) Very slow reaction such that Hatta's modulus is less that 0.02 [10]

(b) Gaseous ammonia (A) is to be absorbed and reacts with nitric acid (B) as follows: $A(l \rightarrow g) + B(l) \rightarrow R(l)$, $r_{Al} = kC_A C_B$ in a packed such that Hatta's modulus is less than 0.02. For each case state suitable type of conductor.

Given that:

$$p_A = 100$$
 Pa and $C_B = 100$ mol/m³ liquid
 $k = 10^{-2}$ m³/mol².h
 $k_{Ag} = 0.01$ mol/h.m² of reactor.Pa
 $a = 100$ m²/m³ of reactor
 $k_{Al} a = 100$ m³ liquid / (m³ reactor h)
 $H_A = 10^5$ (Pa m³ liquid)/mol
 $f_l = 0.1$ m³liquid/m³reactor

 $\mathcal{D}_{\mathrm{A}l} = \mathcal{D}_{\mathrm{B}l} = 10^{-6} \,\mathrm{m}^2/\mathrm{hr}$

(i) Calculate the resistances in gas and liquid films and in the bulk liquid and locate the major resistance. [10]

Page 2 of 8

(ii) Locate the reaction zone	[1]
(iii) Is the reaction pseudo-first order? Explain your answer.	[2]
(iv) Calculate the rate of reaction in mol/hr m^3 (react).	[2]

Question two

(a) Write a brief description of the *shrinking core* and *progressive conversion* models. Draw representative profiles to aid your explanations. [10]

(b) For the gas-liquid reaction, $A(l \rightarrow g) + B(l) \rightarrow R(l)$ and with C_{Ai} comparable with C_{Bl} , sketch the concentration profiles of A and B in the liquid film and bulk for the following situations, indicating where the reaction takes place:

(i) instantaneous reaction	[3]
----------------------------	-----

- (ii) fast reaction, such that the Hatta modulus > 2 [3]
- (iii) very slow reaction such that the Hatta modulus < 0.02 [3]

(iv) for each case, name one type of reactor which would be suitable and explain your choice. [6]

Question three

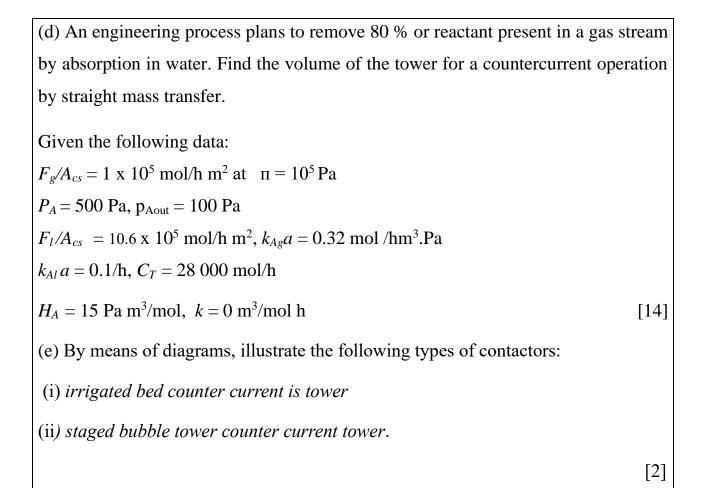
(a) With the aid of sketch diagrams show **five** contacting patterns in fluid-solid reactors. [5]

(b) State the three rate controlling mechanisms of the shrinking core model for fluid -particle reaction [3]

(c) Spherical particles of graphite of size R = 5 mm are roasted isothermally in a stream of air. The time-conversion data obtained in **Table 1**

Table 1

<i>t</i> , min	15	30	60
X_B	0.334	0.584	0.880


(i)By using three appropriate formulae, find the values of τ (the time required for complete conversion) for the three rate controlling mechanisms. [3]
(ii) Using the data in **Table**, find rate mechanism controlling the of the roasting process [9]

(iii) Calculate the time required for complete combustion of graphite particles (pure Carbon), for which the reaction proceeds according to the shrinking particle model, if the graphite particles (radius 5 mm and density of 2200 kg/m³) are exposed to a high-velocity 10%-oxygen stream at 1173 K and 1 atm. The rate constant is 20 cm/s

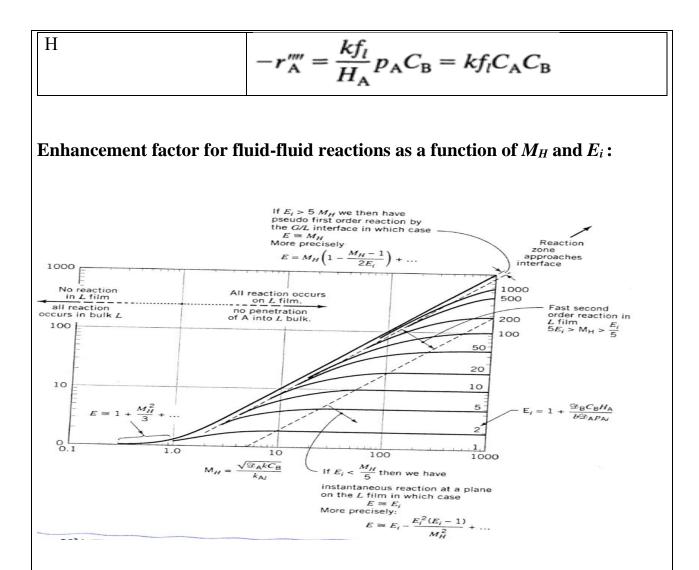
[5]

Question four

(a) (i) What is a <i>contactor</i> ?	[1]
(ii) What is the difference between a tank and a tower in fluid -fluid reactor desig	gn
	[2]
(b) State the type of contactor for the following situations:	
(i) If the liquid film dominates	
(ii) If the resistance is in the main body of the liquid	
(iii) Relative flow rates of about F_{l}/F_{g} , is 10 at 1 bar	
	[3]
(c) State any three characteristics a contactor	[3]
Page 4 of 8	

END OF EXAM

LIST OF FORMULAE


Fluid fluid reactions

Fluid-fluid overall reaction equation:

$$-r_{A}'''' = \frac{1}{\frac{1}{k_{Ag}a} + \frac{H_{A}}{k_{Al}aE} + \frac{H_{A}}{kC_{B}f_{l}}} p_{A}$$

gas film liquid film liquid bulk
resistance resistance resistance

Page 5 of 8

Fluid-fluid overall reaction equation for different cases: Case Formula of rate equation A and \overline{B} $\left(k_{Ag}p_{A} \leq \frac{k_{Bi}C_{B}}{b}\right) \qquad -r_{A}'' = -\frac{1}{S}\frac{aN_{A}}{dt} = k_{Ag}p_{A}$ Case A: if $k_{Ag}P_A \ge \frac{k_{Bl} C_B}{b}$ Case B: if $k_{Ag}P_A \leq \frac{k_{Bl} C_B}{h}$ С $-r_{A}^{\prime\prime\prime\prime} = \frac{1}{\frac{1}{k_{Ag}a} + \frac{H_{A}}{k_{Al}aE}} p_{A}$ $-r_{A}^{\prime\prime\prime\prime\prime} = \frac{1}{\frac{1}{\frac{1}{k_{Ag}a} + \frac{H_{A}}{a\sqrt{\mathscr{D}_{A}kC_{B}}}}} p_{A}$ D $-r_{A}^{\prime\prime\prime\prime\prime} = \frac{1}{\frac{1}{k_{Ag}a} + \frac{H_{A}}{k_{Al}aE} + \frac{H_{A}}{kC_{B}f_{l}}} p_{A}$ liquid film liquid bulk gas film E and F resistance resistance resistance G $-r_{\rm A}^{m} = \frac{1}{\frac{1}{h_{\rm A}} + \frac{H_{\rm A}}{h_{\rm A}} + \frac{H_{\rm A}}{h_{\rm A}}}$ Page 6 of 8

Fluid-fluid reactor design:

For any two points in an absorber:

$$p_{A2} - p_{A1} = \frac{F_l \pi}{F_g C_T} (C_{A2} - C_{A1})$$

Volume of a contractor:

$$V_{r} = hA_{cs} = \frac{F_{g}}{\pi} \int_{p_{A1}}^{p_{A2}} \frac{dp_{A}}{-r_{A}^{m''}} = \frac{F_{l}}{C_{T}} \int_{C_{A1}}^{C_{A2}} \frac{dC_{A}}{-r_{A}^{m''}}$$

$$= \frac{F_{g}}{\pi K_{Ag}a} \int_{p_{A1}}^{p_{A2}} \frac{dp_{A}}{p_{A} - p_{A}^{*}} = \frac{F_{l}}{C_{T}K_{Al}a} \int_{C_{A1}}^{C_{A2}} \frac{dC_{A}}{C_{A}^{*} - C_{A}}$$

$$\int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{c} \int_{a}^{c}$$

Fluid-particle reactor design:

Conversions-Time Expressions for Various Shapes of Particles, Shrinking core model:

		Film Diffusion Controls	Ash Diffusion Controls	Reaction Controls
Size Particles	Flat plate $X_{\rm B} = 1 - \frac{1}{L}$	$\frac{t}{\tau} = X_{\rm B}$	$\frac{t}{ au} = X_{ m B}^2$	$rac{t}{ au} = X_{ m B}$
		$\tau = \frac{\rho_{\rm B}L}{bk_g C_{\rm Ag}}$	$\boldsymbol{\tau} = \frac{\rho_{\rm B} L^2}{2b \mathscr{D}_{\rm e} C_{\rm Ag}}$	$\tau = \frac{\rho_{\rm B}L}{bk''C_{\rm Ag}}$
	Cylinder	$\frac{t}{\tau} = X_{\rm B}$	$\frac{t}{\tau} = X_{\rm B} + (1 - X_{\rm B}) \ln(1 - X_{\rm B})$	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/2}$
Constant S	$X_{\rm B} = 1 - \left(\frac{r_{\rm c}}{R}\right)^2$	$\tau = \frac{\rho_{\rm B}R}{2bk_g C_{\rm Ag}}$	$\boldsymbol{\tau} = \frac{\rho_{\rm B} R^2}{4b \mathscr{D}_e C_{\rm Ag}}$	$\boldsymbol{\tau} = \frac{\rho_{\rm B}R}{bk''C_{\rm Ag}}$
	Sphere	$\frac{t}{\tau} = X_{\rm B}$	$\frac{t}{\tau} = 1 - 3(1 - X_{\rm B})^{2/3} + 2(1 - X_{\rm B})$	$\frac{t}{\tau} = 1 - (1 - X_{\rm B})^{1/3}$
	$X_{\rm B} = 1 - \left(\frac{r_{\rm c}}{R}\right)^3$	$\tau = \frac{\rho_{\rm B}R}{3bk_g C_{\rm Ag}}$	$oldsymbol{ au}=rac{ ho_{ m B}R^2}{6b\mathscr{D}_eC_{ m Ag}}$	$\tau = \frac{\rho_{\rm B}R}{bk''C_{\rm Ac}}$

Mean conversion of the solids leaving a plug flow reactor:

$$1 - \overline{X}_{\mathrm{B}} = \sum_{R(t_p=\tau)}^{R_m} \left[1 - X_{\mathrm{B}}(R_i)\right] \frac{F(R_i)}{F}$$

Chemical reaction controls:

$$[1 - X_{\mathrm{B}}(R_i)] = \left(1 - \frac{t_p}{\tau(R_i)}\right)^3$$

Page **8** of **8**