

FACULTY OF ENGINEERING

CHEMICAL AND PROCESSING ENGINEERING DEPARTMENT
REACTOR ANALYSIS AND DESIGN I/CHEMICAL REACTION ENGINEERING I
CODE: CHEP 214/HCHE 221
SESSIONAL EXAMINATIONS
DECEMBER 2022
DURATION: 3 HRS
LECTURER: DR M. CHIGONDO

Question one

(a) Define the term 'specific reaction rate of reaction
(b) (i) The rate equation of a reaction $2 A+B \rightarrow C$
is $-\mathrm{r}_{\mathrm{A}}=k C A^{2} C_{B}$. Find the unit of ' k '.
(ii) A certain reaction has a rate given by $-r_{A}=0.003 C_{A}{ }^{2}, \mathrm{~mol} / \mathrm{cm}^{3}$-min. If the concentration is to be expressed in $\mathrm{mol} /$ liter and time in hours, what would be the value and units of the rate constant?
(c) Define the terms molecularity and order of an elementary reaction
(d) Distinguish between homogeneous and heterogeneous reactions.
(e) A mixed flow reactor is being used to determine the kinetics of a reaction whose stoichiometry is $\mathrm{A} \rightarrow \mathrm{R}$. For this purpose, various flow rates of an aqueous solution of $100 \mathrm{~mol} \mathrm{~A} / \mathrm{L}$ are fed to a 1-liter reactor, and for each run the outlet concentration of A is measured (Table 1). Find a rate equation to represent the following data. Also assume that reactant alone affects the rate.

Table 1

$\mathbf{v}_{\mathbf{0}}($ litre $/ \mathrm{min})$	1	6	24
$\mathrm{C}_{\mathrm{A}}(\mathrm{mol} / \mathrm{litre})$	2	10	25

(f) The primary reaction occurring in the homogeneous decomposition of nitrous oxide is found to be $\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2}+\frac{1}{2} \mathrm{O}_{2}$ with rate
$r_{N_{2} O}=\frac{k_{l}\left[N_{2} O\right]_{2}}{1+k_{1}\left[N_{2} O\right]}$. Devise a mechanism to explain the observed rate
2. (a) Differentiate between differential and integral method of analysis of batch rector data.
(b) At $700^{\circ} \mathrm{C}, A$ decomposes as follows :
$4 A(g) \rightarrow B(b)+6 C(g) \quad-r_{A}=10 h^{-1} C_{A}$
Find the size of the plug flow reactor operating at $700{ }^{\circ} \mathrm{C}$ and 11.4 atm needed for 75% conversion of $10 \mathrm{~mol} / \mathrm{h}$ of A in a $90 \% A$ and 10% inerts feed.
(c) The gaseous feed of pure $\mathrm{A}(1 \mathrm{~mol} / \mathrm{L})$ enters a mixed flow reactor of volume 2 liters and reacts as follows

$$
2 A \rightarrow R, \quad r_{A}=0.25 C_{A}{ }^{2} \mathrm{~mol} / \mathrm{Ls}
$$

(i) What is the order of this reaction?
(ii) Calculate the feed rate in liters $/ \mathrm{min}$ of the outlet concentration $C_{A}=0.25$ $\mathrm{mol} / \mathrm{L}$
(d) With the aid of diagram show the three different types of semi-batch reactors [6]

Question three

(a) State three factors to be considered for reactor design
(b) With the aid of equations distinguish between holding time and space time for flow reactors
(c) For an irreversible gas phase reaction $2 \mathrm{~A} \rightarrow 5 \mathrm{R}$, determine the value of \mathcal{E}_{A} if the feed is a mixture of $85 \% \mathrm{~A}$ and 15% inert.
(d)(i) What is a batch reactor?
(ii) State the advantages and disadvantages of a batch reactor?
(iii) Differentiate between MFR and PFR.
(e) The polymerization of a monomer M in made in a MFR. Given that $v_{o}=1.2 \mathrm{~L} / \mathrm{h}$, $C_{A O}=3 \mathrm{~mol} / \mathrm{h}$ and 80% conversion is achieved, calculate the volume of the reactor. Give that $r_{M}=6.33 \times 10^{-2} C_{A}$

Question four

(a) State three factors that make up the contacting or flow in non-ideal reactors
(b) A batch of radioactive material is dumped into a river. At a dam, about 200 km downstream the flowing waters ($3000 \mathrm{~m}^{3} / \mathrm{s}$) are monitored for a particular radioisotope ($\mathrm{t}_{1 / 2}>10 \mathrm{yr}$) and the data of Fig. $\mathbf{1}$ are obtained.
(i) How many units of this tracer were introduced into the river?
(ii) What is the volume of river waters between the dam and the point of introduction of tracer?

Fig. 1
(c) A flow rate of $F_{A O}=1 \mathrm{~L} / \mathrm{s}$ of 20% ozone -80% air mixture at a total pressure of 1.5 atm and $93^{\circ} \mathrm{C}$ passes through a plug flow reactor (PFR). Under these conditions ozone decomposes as follows
$2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$ with the second order rate, $r_{03}=0.05 \mathrm{C}^{2}{ }_{03}(\mathrm{~mol} / \mathrm{Ls})$.
(i)Write the formula of the residence time for a PFR
(ii) Find the \mathcal{E}_{A} for the reaction
(iii) Find the residence time of the size of the PFR needed for 50% decomposition of
ozone.

$$
p_{A}=C_{A o} \mathbf{R T} \quad,[\mathrm{R}=8.31 \mathrm{Nm} / \mathrm{mol} \mathrm{~K}, \mathbf{T} \text { is in } \mathrm{K}]
$$

(d) (i) Given that:
$4 A+3 B \rightarrow 10 C$, what is the relationship between r_{A}, r_{B} and r_{C} ?
(ii) A 2 liter per minute of liquid containing A and $\mathrm{B}\left(C_{A o}=0.30 \mathrm{~mol} / \mathrm{liter}, C_{B o}=0.05\right.$ $\mathrm{mol} /$ liter) flow into a mixed reactor of volume, $V=1$ liter. The materials react in a complex manner for which the stoichiometry is unknown. The outlet stream from the reactor contains A, B, and $\mathrm{C}\left(C_{A f}=0.08 \mathrm{~mol} / / \mathrm{litre}, C_{B f}=0.07 \mathrm{~mol} / \mathrm{litre}, C_{C f}=0.03\right.$ mol/liter). Find the rate of reaction of A, B, and C for the conditions within the reactor.

END OF EXAM

LIST OF FORMULAE

BATCH REACTOR

$$
\begin{aligned}
& t=N_{A O} \int_{0}^{X_{A}} \frac{d X_{A}}{-r_{A} V} \\
& t=C_{A O} \int_{0}^{X_{A}} \frac{d X_{A}}{-r_{A}}=-\int_{C_{A O}}^{C_{A}} \frac{d C_{A}}{-r_{A}} \\
& \tau=N_{A O} \int_{o}^{X_{A}} \frac{d X_{A}}{\left(-r_{A}\right) V_{o}\left(1+\varepsilon_{A} X_{A}\right)}=C_{A O} \int_{o}^{X_{A}} \frac{d X_{A}}{\left(-r_{A}\right)\left(1+\varepsilon_{A} X_{A}\right)}
\end{aligned}
$$

MIXED FLOW REACTOR

$\frac{V}{F_{A O}}=\frac{\tau}{C_{A O}}=\frac{\Delta X_{A}}{-r_{A}}=\frac{X_{A}}{-r_{A}}$
or
$\frac{V}{F_{A O}}=\frac{\Delta X_{A}}{\left(-r_{A}\right) f}=\frac{X_{A f-} X_{A i}}{\left(-r_{A}\right) f}$
or
or

$$
\begin{gathered}
\tau=\frac{1}{s}=\frac{V}{v_{O}}=\frac{V C_{o}}{F_{A O}}=\frac{C_{A O} X_{A}}{-r_{A}} \\
\tau=\frac{V C_{o}}{F_{A O}}=\frac{C_{A O}\left(X_{A f-} X_{A i}\right)}{\left(-r_{A}\right) f} \\
\tau=\frac{V}{v}=\frac{C_{A O} X_{A}}{-r_{A}}=\frac{C_{A O}-C_{A}}{-r_{A}}
\end{gathered}
$$

PLUG FLOW REACTOR

$$
\begin{aligned}
& \frac{V}{F_{A O}}=\frac{\tau}{C_{A O}}=\int_{0}^{X_{A f}} \frac{d X_{A}}{-r_{A}} \\
& \frac{V}{F_{A O}}=\frac{V}{C_{A O}}=\int_{A I}^{X_{A f}} \frac{d X_{A}}{-r_{A}} \\
& \frac{V}{F_{A O}}=\frac{\tau}{C_{A O}}=\int_{0}^{X_{A f}} \frac{d X_{A}}{-r_{A}}=-\frac{1}{C_{A O}} \int_{A O}^{X_{A f}} \frac{d C_{A}}{-r_{A}} \\
& \tau=\frac{V}{v_{O}}=C_{A O} \int_{0}^{X_{A I}} \frac{d X_{A}}{-r_{A}}=-\int_{A O}^{X_{A f}} \frac{d C_{A}}{-r_{A}} \\
& X_{A}=1-\frac{C_{A}}{C_{A O}} \text { and } \quad d X_{A}=-\frac{d C_{A}}{C_{A O}}
\end{aligned}
$$

$$
\tau=\frac{V}{v_{O}}=C_{A O} \int_{0}^{X_{A f}} \frac{d X_{A}}{-r_{A}}
$$

$$
\tau=\frac{V}{v_{O}}=C_{A O} \int_{A I}^{X_{A f}} \frac{d X_{A}}{-r_{A}}
$$

Performance Equations for n th-order Kinewes and $\varepsilon_{\mathrm{A}}=0$		
	Plug Flow or Batch	Mixed Flow
$\begin{aligned} n & =0 \\ -r_{\mathrm{A}} & =k \end{aligned}$	$\overline{\frac{k \tau}{C_{A 0}}}=\frac{C_{A 0}-C_{\mathrm{A}}}{C_{\mathrm{A} 0}}=X_{\mathrm{A}}$	$\frac{k \tau}{C_{A 0}}=\frac{C_{A 0}-C_{\mathrm{A}}}{C_{\mathrm{A} 0}}=X_{\mathrm{A}}$
$\begin{gathered} n=1 \\ -r_{\mathrm{A}}=k C_{\mathrm{A}} \end{gathered}$	$k \tau=\ln \frac{C_{\mathrm{A} 0}}{C_{\mathrm{A}}}=\ln \frac{1}{1-X_{\mathrm{A}}}$	$k \tau=\frac{C_{A 0}-C_{\mathrm{A}}}{C_{\mathrm{A}}}=\frac{X_{\mathrm{A}}}{1-X_{\mathrm{A}}}$
$\begin{aligned} n & =2 \\ -r_{\mathrm{A}} & =k C_{\lambda}^{2} \end{aligned}$	$k \tau C_{A 0}=\frac{C_{A 0}-C_{\mathrm{A}}}{C_{\mathrm{A}}}=\frac{X_{\mathrm{A}}}{1-X_{\mathrm{A}}}$	$k \tau=\frac{\left(C_{A 0}-C_{A}\right)}{C_{\Lambda}^{2}}=\frac{X_{\Lambda}}{C_{A 0}\left(1-X_{\Lambda}\right)^{2}}$
$\begin{gathered} \text { any } n \\ -r_{\mathrm{A}}=k C_{\lambda} \end{gathered}$	$(n-1) C_{X_{0}^{-1}}{ }^{-1} k \tau=\left(\frac{C_{A}}{C_{A 0}}\right)^{1-n}-1=\left(1-X_{A}\right)^{1-n}-1$	$k \tau=\frac{C_{A 0}-C_{A}}{C_{A}^{n}}=\frac{X_{\mathrm{A}}}{C_{C_{0}^{-1}}^{-1}\left(1-X_{A}\right)^{n}}$
$\begin{gathered} n=1 \\ \mathrm{~A} \stackrel{1}{\stackrel{1}{2}} \mathrm{R} \\ C_{\mathrm{R} 0}=0 \\ \hline \end{gathered}$	$k_{1} \tau=\left(1-\frac{C_{A c}}{C_{A 0}}\right) \ln \left(\frac{C_{A 0}-C_{A c}}{C_{A}-C_{A c}}\right)=X_{A c} \ln \left(\frac{X_{A c}}{X_{A c}-X_{A}}\right)$	$k_{1} \tau=\frac{\left(C_{A 0}-C_{A}\right)\left(C_{A 0}-C_{A A}\right)}{C_{A 0}\left(C_{A}-C_{A c}\right)}=\frac{X_{A} X_{A c}}{X_{A c}-X_{A}}$
General rate	$\tau=\int_{C_{A}}^{c_{N}} \frac{d C_{A}}{-r_{\mathrm{A}}}=C_{A 0} \int_{0}^{x_{\Lambda}} \frac{d X_{A}}{-r_{\mathrm{A}}}$	$\tau=\frac{C_{A 0}-C_{A}}{-r_{A J}}=\frac{C_{A 0} X_{A}}{-r_{A A}}$

Performance Equations for n th-order Kinetics and $\varepsilon_{\mathrm{A}} \neq 0$

	Plug Flow	Mixed Flow
$\begin{aligned} n & =0 \\ -r_{A} & =k \end{aligned}$	$\frac{k r}{C_{A 0}}=X_{A}$	$\frac{k r}{C_{A 0}}=X_{\mathrm{A}}$
$\begin{aligned} n & =1 \\ -r_{A} & =k C_{A} \end{aligned}$	$k r=\left(1+\varepsilon_{\mathrm{A}}\right) \ln \frac{1}{1-X_{\mathrm{A}}}-\varepsilon_{\mathrm{A}} X_{\mathrm{A}}$	$k \tau=\frac{X_{\mathrm{A}}\left(1+\varepsilon_{\mathrm{A}} X_{\mathrm{A}}\right)}{1-X_{\mathrm{A}}}$
$\begin{aligned} n & =2 \\ -r_{\mathrm{A}} & =k C_{\lambda} \end{aligned}$	$k r C_{A 0}=2 \varepsilon_{A}\left(1+\varepsilon_{A}\right) \ln \left(1-X_{A}\right)+\varepsilon_{\lambda}^{2} X_{A}+\left(\varepsilon_{A}+1\right)^{2} \cdot \frac{X_{A}}{1-X_{A}}$	$k r C_{A 0}=\frac{X_{\lambda}\left(1+\varepsilon_{\lambda} X_{\lambda}\right)^{2}}{\left(1-X_{\lambda}\right)^{2}}$
$\begin{gathered} \text { any } n \\ -r_{\lambda}=k C_{\lambda}^{\imath} \end{gathered}$		$k r C_{N_{0}^{-1}}^{-1}=\frac{X_{A}\left(1+\varepsilon_{\mathrm{A}} X_{\mathrm{A}}\right)^{n}}{\left(1-X_{A}\right)^{*}}$
$\begin{gathered} n=1 \\ \mathrm{~A} \underset{\underset{2}{\underset{2}{2}} \mathrm{rR}}{ } \\ C_{\mathrm{Rs}}=0 \end{gathered}$	$\frac{k \tau}{X_{\lambda}}=\left(1+\varepsilon_{\mathrm{A}} X_{\text {A }}\right) \ln \frac{X_{\text {A }}}{X_{\lambda}-X_{\mathrm{A}}}-\varepsilon_{\mathrm{A}} x_{\mathrm{A}}$	$\frac{k \tau}{X_{A}}=\frac{X_{A}\left(1+\varepsilon_{A} X_{A}\right)}{X_{\lambda}-X_{A}}$
General expression	$\tau=C_{\mathrm{A} 0} \int_{0}^{x_{\mathrm{A}}} \frac{d X_{\mathrm{A}}}{-r_{\mathrm{A}}}$	$\tau=\frac{C_{\mathrm{A} 0} X_{\mathrm{A}}}{-r_{\mathrm{A}}}$

$\binom{$ Area under the }{$C_{\text {pulse }}$ curve }$: \quad \mathrm{A}=\int_{0}^{\infty} C d t \cong \sum_{i} C_{i} \Delta t_{i}=\frac{M}{v} \quad\left[\frac{\mathrm{~kg} \cdot \mathrm{~s}}{\mathrm{~m}^{3}}\right]$
$\binom{$ Mean of the }{$C_{\text {pulse }}$ curve }$: \quad \bar{t}=\frac{\int_{0}^{\infty} t C d t}{\int_{0}^{\infty} C d t} \cong \frac{\sum_{i} t_{i} C_{i} \Delta t_{i}}{\sum_{i} C_{i} \Delta t_{i}}=\frac{V}{v} \quad$ [s

