MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: CHEMICAL ENGINEERING THERMODYNAMICS II CODE: CHEP212 SESSIONAL EXAMINATIONS DECEMBER 2022

DURATION: 3 HOURS

EXAMINER: MR D. NYADENGA

INSTRUCTIONS

1. Answer any four questions.
2. Start a new question on a fresh page.
3. Total marks 100.

Additional material(s): Calculator, Steam Tables,
Conversions Table, Antoine Equation
Constants Table, Periodic Table

QUESTION 1

a) State the conditions under which a gas mixture is assumed to be ideal.
b) A stream of nitrogen gas flowing at the rate of $14 \mathrm{~kg} / \mathrm{s}$ and a stream of hydrogen gas flowing at the rate of $6 \mathrm{~kg} / \mathrm{s}$ are mixed in a steady flow process. The temperature of the whole system is constant at $25^{\circ} \mathrm{C}$. Assuming the gases to be ideal, calculate:
i. The rate of change in total entropy.
ii. The rate of change in total Gibbs free energy.
c) The molar volume of a binary liquid mixture at T and P is given by:

$$
V=120 x_{1}+70 x_{2}+x_{1} x_{2}\left(15 x_{1}+8 x_{2}\right)
$$

i. Find the expressions for the partial molar volumes of species 1 and 2 at T and P as functions of x_{l}.
ii. Find the numerical values of partial molar volumes of species 1 and 2 at infinite dilution.

QUESTION 2

a) The volume change of mixing $\left(\mathrm{cm}^{3} / \mathrm{mol}\right)$ for the system ethanol (1)/methyl butyl ether (2) at $25^{\circ} \mathrm{C}$ is given by the equation:

$$
\Delta V=x_{1} x_{2}\left[-1.026+0.22\left(x_{1}-x_{2}\right)\right]
$$

Given that $V_{l}=58.63 \mathrm{~cm}^{3} / \mathrm{mol}$ and $V_{2}=118.46 \mathrm{~cm}^{3} / \mathrm{mol}$, calculate the volume of mixture formed when $750 \mathrm{~cm}^{3}$ of pure species 1 is mixed with $1500 \mathrm{~cm}^{3}$ of pure species 2 at $25^{\circ} \mathrm{C}$.
b) $\mathrm{LiCl} \cdot 2 \mathrm{H}_{2} \mathrm{O}(s)$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are mixed isothermally at $25^{\circ} \mathrm{C}$ to form a solution containing 8 mol of $\mathrm{H}_{2} \mathrm{O}$ for each mole of LiCl . Determine the heat effect per mole of solution. Data for standard enthalpy changes of formation at 298 K is given in the next page.

Chemical component

$\mathrm{LiCl}_{2}{ }_{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
LiCl in $8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Enthalpy change of formation

- $1012650 \mathrm{~J} / \mathrm{mol}$ of LiCl
- $285830 \mathrm{~J} / \mathrm{mol}$ of $\mathrm{H}_{2} \mathrm{O}$
- $440529 \mathrm{~J} / \mathrm{mol}$ of LiCl
c) A $100 \mathrm{lb}_{\mathrm{m}}$ batch of $50 \mathrm{wt} \% \mathrm{NaOH}$ solution in water at $80^{\circ} \mathrm{F}$ and atmospheric pressure is heated in an insulated tank by injection of live steam drawn through a valve from a line containing saturated steam $(x=1)$ at 2.4 bar. The process is stopped when the NaOH solution reaches a concentration of $45 \mathrm{wt} \%$. Determine the temperature of this final solution in ${ }^{0} \mathrm{~F}$. The $H-x$ graph for $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}$ system is attached at the end of the question paper.

QUESTION 3

a) The phase rule is used to determine the number of intensive variables that must be specified to fix the state of the system.
i. State the phase rule for a non-reacting system.
ii. Determine the number of intensive variables required to fix the state of a mixture of methane, ethane and propane that is in vapour/liquid equilibrium at a specified fixed pressure.
b) State and explain whether the following system obeys Raoult's law:
i. Water/n-decane
ii. Water/ammonia
c) Show that when x_{i} is unknown Raoult's law can be expressed as:

$$
\begin{equation*}
P=\frac{1}{\sum_{i}\left(y_{i} / P_{i} \text { sat }\right)} \tag{4}
\end{equation*}
$$

d) A system of n -pentane(1)/n-hexane(2) is at $T=50^{\circ} \mathrm{C}$ and $y_{l}=0.6$. Assuming that Raoult's law applies, determine the pressure of the system and x_{l}. The saturation pressures are calculated using the Antoine Equation.

QUESTION 4

a) Explain the effect of osmotic pressure on reverse osmosis operations.
[4]
b) A concentrated binary solution containing mostly species 2 (but $x_{2} \neq 1$) is in equilibrium with a vapour phase containing both species 1 and 2 . The pressure of this two-phase system is 1 bar ; the temperature is $25^{\circ} \mathrm{F}$. Determine good estimates of x_{1} and y_{l} given that $H_{l}=200$ bar and $\mathrm{P}_{2}{ }^{\text {sat }}=0.1$ bar.
c) For the system ethyl ethanoate (1)/n- heptane(2) at 343.15 K ,

- $\ln \gamma_{1}=0.95 x_{2}{ }^{2}$
$\ln \gamma_{2}=0.95 x_{1}{ }^{2}$
- $\mathrm{P}_{1}{ }^{\text {sat }}=79.8 \mathrm{kPa}$
$\mathrm{P}_{2}{ }^{\text {sat }}=40.5 \mathrm{kPa}$

Assuming that the modified Raoult's law applies,
i. Show that an azeotrope exists for the system.
ii. Determine the azeotropic composition and pressure at 343.15 K .

QUESTION 5

The following reaction of ideal gases reaches equilibrium at $350^{\circ} \mathrm{C}$ and 3 bar:

$$
\mathrm{CH}_{3} \mathrm{CHO}_{(g)}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(g)} \quad \Delta H=-v e
$$

K at $350{ }^{\circ} \mathrm{C}$ is 3.7064 . Initially there are 3 moles of H_{2} and 2 moles of $\mathrm{CH}_{3} \mathrm{CHO}$.
a) Calculate the equilibrium composition of the system.
b) If the pressure is reduced to 1 bar and temperature is maintained at $350^{\circ} \mathrm{C}$, determine the new equilibrium composition.
c) Explain the effect on the equilibrium composition of increasing the temperature to $500^{\circ} \mathrm{C}$ whilst maintaining pressure at 3 bar.
d) Suppose that $\operatorname{Ar}(\mathrm{g})$ is added to the system whilst $T=350^{\circ} \mathrm{C}$ and $P=3 \mathrm{bar}$.
i. How does this affect K.
ii. Explain the effect on equilibrium composition.

END OF EXAMINATION

Page 5 of 5

