

MANICALAND STATE UNIVERSITY

OF APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: CHEMICAL ENGINEERING THERMODYNAMICS I/PRINCIPLES OF

ENGINEERING THERMODYNAMICS

CODE: CHEP 121/ENGT 125

SESSIONAL EXAMINATIONS NOVEMBER 2022

DURATION: 3 HOURS

EXAMINER: C. MUHEZWA

INSTRUCTIONS

- 1. Answer All questions.
- 2. Start a new question on a fresh page
- 3. Total marks 100

Additional material(s): Calculator, Steam Tables,

Page 1 of 6

QUESTION 1

Explain the meaning of the following terms:

- i. Closed system,
- ii. Isolated system,
- iii. State function,
- iv. Internal energy.
- a. What is the implication of the first law of thermodynamics?
- b. 3 kg of water are vaporized at the constant temperature of 100 °C and constant pressure of 101.33 kPa. The specific volumes of liquid water and water vapor at these conditions are 0.00104 m³·kg⁻¹ and 1.673 m³·kg⁻¹, respectively. For this change, heat in the amount of 6770.7 kJ is added to the water. Determine

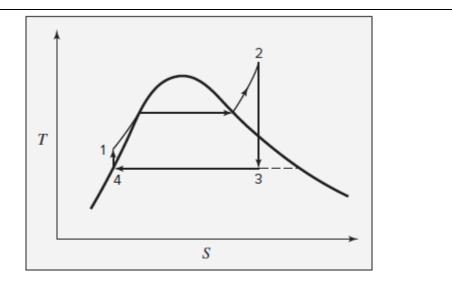
[4]

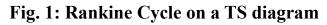
[1]

- i. internal energy change (ΔU),
- ii. enthalpy change (Δ H) for the system. [5]
- c. One mole of N_2 gas is contained at 273 K and a pressure of 1atm. The addition of 3000 J of heat to the gas at constant pressure causes 832 J of work to be done during the expansion. Determine
 - i. the final state of the gas [6]
 - ii. the values of internal energy change (ΔU) and enthalpy change (ΔH) for the change of state [5]
 - iii. The values of C_v and C_p for Nitrogen (N₂). [4]

Assume that nitrogen behave as an ideal gas and that the above change of state is conducted reversibly.

QUESTION 2


a. What is meant by an					
i. adiabatic change?					
ii. isobaric change?	[2]				
b. A gas in a piston-cylinder assembly undergoes an expansion process for					
which the relationship between pressure and volume is given by the equation					
$PV^n = constant$. The initial pressure is 3 bar, the initial volume is 0.1 m ³ , and					
the final volume is 0.2 m ³ . Determine the work for the process, in kJ, if					
i. $n = 1.5$	6]				
ii. $n = 0.$ [[3]				
a. Draw separate PV graphs to represent the two processes in (b) above and					
show on them, the work done by the gas in each case	[4]				
b. Explain the meaning of the term <i>entropy</i> .	[1]				
c. Choose the member with the higher entropy in each of the following pairs,					
and justify your choice assuming constant temperature for (i) and (ii)					
i. 1 mol of $CO_2(s)$ or 1 mol of $CO_2(g)$					
ii. 3 mol of $O_2(g)$ or 2 mol of $O_3(g)$					
iii. seawater at 2°C or at 23°C	[6]				
d. Explain the significance of the Gibb's free energy	[2]				
e. What is the effect of increasing entropy on the Gibbs free energy?	[1]				
QUESTION 3					
a. Differentiate between saturated and superheated steam.	[2]				
b. Describe the steps that make up the cycle of any Carnot engine	[4]				
Page 3 of 6					


- c. A closed system containing steam undergoes a reversible constant pressure process during which 400 kJ/kg of heat transfer takes place. Initially the steam has a dryness fraction, *x*, of 1.0 and a temperature of 365.7 $^{\circ}$ C. Using the steam tables, and using linear interpolation where necessary, determine:
 - The specific enthalpy, specific internal energy and specific volume at the beginning of the process. [4]
 - ii. The specific enthalpy, temperature and specific internal energy of the steam at the end of the process. [10]
 - iii. The specific work transfer. [3]
- d. Heat in the amount of 7.5 kJ is added to a closed system while its internal energy decreases by 12 kJ. How much energy is transferred as work? [2]

QUESTION 4

a.	State the Clausius' statement of the second law of thermodynamics and	
	explain how it supports the refrigeration cycle.	[2]
b.	Outline two ways in which the Rankine cycle differs from the Carnot (pow	ver)
	cycle.	[2]
c.	Power is generated in a cyclic process in which steam generated in a boiler	is :
	expanded in an adiabatic turbine to produce work. The processes that occur	r
	as the working fluid flows around the cycle are represented by lines on the	TS

diagram in °C.

- i. Describe what happens between point 1 and 2. [3]
- ii. Draw a similar TS diagram and represent an ordinary Carnot cycle. [2]
- d. A refrigerator works by steadily circulating a refrigerant at low temperature through passages in the walls of the freezer compartment. The rate of heat transfer from the freezer compartment to a refrigerant is 8000 kJ/h and the power input required to operate the refrigerator is 3200 kJ/h.
 - i. Determine the coefficient of performance of the refrigerator. [3]
 - The refrigerator now maintains the freezer compartment at -5 °C when the air surrounding the refrigerator is at 22 °C through a reversible refrigeration cycle operating between the two heat reservoirs.
 Determine the new coefficient of performance of the refrigerator. [4]
- e. Give one examples of large-scale commercial process requiring refrigeration.

[1]

f. Outline the factors to be considered when choosing a refrigerant. [4]

g.	Gibbs	s Phase rule states that a heterogeneous system in equilibrium is not		
	affected by gravity or by electrical and magnetic forces, but by the number of			
	degrees of freedom.			
	i.	Explain what is meant by number of degrees of freedom	[2]	
	ii.	A water system consists of solid, liquid and vapor. Determine the		
		number of degrees of freedom for the system	[2]	

END OF EXAMINATION