

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: CHEMICAL ENGINEERING THERMODYNAMICS I/PRINCIPLES OF ENGINEERING THERMODYNAMICS CODE: CHEP 121/ENGT 125

SESSIONAL EXAMINATIONS NOVEMBER 2022

DURATION: 3 HOURS
EXAMINER: C. MUHEZWA
INSTRUCTIONS

1. Answer All questions.
2. Start a new question on a fresh page
3. Total marks 100
Additional material(s): Calculator, Steam Tables,

Page $\mathbf{1}$ of $\mathbf{6}$

QUESTION 1

Explain the meaning of the following terms:
i. Closed system,
ii. Isolated system,
iii. State function,
iv. Internal energy.
a. What is the implication of the first law of thermodynamics?
b. 3 kg of water are vaporized at the constant temperature of $100^{\circ} \mathrm{C}$ and constant pressure of 101.33 kPa . The specific volumes of liquid water and water vapor at these conditions are $0.00104 \mathrm{~m}^{3} \cdot \mathrm{~kg}^{-1}$ and $1.673 \mathrm{~m}^{3} \cdot \mathrm{~kg}^{-1}$, respectively. For this change, heat in the amount of 6770.7 kJ is added to the water. Determine
i. internal energy change $(\Delta \mathrm{U})$,
ii. enthalpy change $(\Delta \mathrm{H})$ for the system.
c. One mole of N_{2} gas is contained at 273 K and a pressure of 1 atm . The addition of 3000 J of heat to the gas at constant pressure causes 832 J of work to be done during the expansion. Determine
i. the final state of the gas
ii. the values of internal energy change $(\Delta \mathrm{U})$ and enthalpy change $(\Delta \mathrm{H})$ for the change of state
iii. The values of C_{v} and C_{p} for Nitrogen $\left(\mathrm{N}_{2}\right)$.

Assume that nitrogen behave as an ideal gas and that the above change of state is conducted reversibly.

QUESTION 2

a. What is meant by an
i. adiabatic change?
ii. isobaric change?
b. A gas in a piston-cylinder assembly undergoes an expansion process for which the relationship between pressure and volume is given by the equation $P V^{n}=$ constant. The initial pressure is 3 bar, the initial volume is $0.1 \mathrm{~m}^{3}$, and the final volume is $0.2 \mathrm{~m}^{3}$. Determine the work for the process, in kJ , if

$$
\begin{equation*}
\text { i. } n=1.5 \tag{6}
\end{equation*}
$$

ii. $n=0$.
a. Draw separate $P V$ graphs to represent the two processes in (b) above and show on them, the work done by the gas in each case
b. Explain the meaning of the term entropy.
c. Choose the member with the higher entropy in each of the following pairs, and justify your choice assuming constant temperature for (i) and (ii)
i. 1 mol of $\mathrm{CO}_{2}(s)$ or 1 mol of $\mathrm{CO}_{2}(g)$
ii. 3 mol of $\mathrm{O}_{2}(\mathrm{~g})$ or 2 mol of $\mathrm{O}_{3}(\mathrm{~g})$
iii. seawater at $2^{\circ} \mathrm{C}$ or at $23^{\circ} \mathrm{C}$
d. Explain the significance of the Gibb's free energy [2]
e. What is the effect of increasing entropy on the Gibbs free energy?

QUESTION 3

a. Differentiate between saturated and superheated steam.
b. Describe the steps that make up the cycle of any Carnot engine
c. A closed system containing steam undergoes a reversible constant pressure process during which $400 \mathrm{~kJ} / \mathrm{kg}$ of heat transfer takes place. Initially the steam has a dryness fraction, x, of 1.0 and a temperature of $365.7^{\circ} \mathrm{C}$. Using the steam tables, and using linear interpolation where necessary, determine:
i. The specific enthalpy, specific internal energy and specific volume at the beginning of the process.
ii. The specific enthalpy, temperature and specific internal energy of the steam at the end of the process.
iii. The specific work transfer.
d. Heat in the amount of 7.5 kJ is added to a closed system while its internal energy decreases by 12 kJ . How much energy is transferred as work?

QUESTION 4

a. State the Clausius' statement of the second law of thermodynamics and explain how it supports the refrigeration cycle.
b. Outline two ways in which the Rankine cycle differs from the Carnot (power) cycle.
c. Power is generated in a cyclic process in which steam generated in a boiler is expanded in an adiabatic turbine to produce work. The processes that occur as the working fluid flows around the cycle are represented by lines on the $T S$ diagram in ${ }^{\circ} \mathbf{C}$.

Fig. 1: Rankine Cycle on a TS diagram
i. Describe what happens between point 1 and 2.
ii. Draw a similar TS diagram and represent an ordinary Carnot cycle. [2]
d. A refrigerator works by steadily circulating a refrigerant at low temperature through passages in the walls of the freezer compartment. The rate of heat transfer from the freezer compartment to a refrigerant is $8000 \mathrm{~kJ} / \mathrm{h}$ and the power input required to operate the refrigerator is $3200 \mathrm{~kJ} / \mathrm{h}$.
i. Determine the coefficient of performance of the refrigerator.
ii. The refrigerator now maintains the freezer compartment at $-5^{\circ} \mathrm{C}$ when the air surrounding the refrigerator is at $22^{\circ} \mathrm{C}$ through a reversible refrigeration cycle operating between the two heat reservoirs.

Determine the new coefficient of performance of the refrigerator.
e. Give one examples of large-scale commercial process requiring refrigeration.
f. Outline the factors to be considered when choosing a refrigerant.
g. Gibbs Phase rule states that a heterogeneous system in equilibrium is not affected by gravity or by electrical and magnetic forces, but by the number of degrees of freedom.
i. Explain what is meant by number of degrees of freedom
ii. A water system consists of solid, liquid and vapor. Determine the number of degrees of freedom for the system

END OF EXAMINATION

