

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF AGRIBUSINESS AND COMMERCE

Agricultural Economics and Development

MATHEMATICS FOR AGRICULTURAL ECONOMICS

CODE: HACE 103

SESSIONAL EXAMINATIONS SEPTEMBER 2020

DURATION: 3 HOURS

EXAMINER: MR N. CHIPUNZA

SECTION A: [COMPULSORY]

Question 1

Factorise where possible
a. $2 x^{3}+x^{2}-2 x-1$
[3 marks]
b. $2 x^{3}-3 x^{2}-3 x+2$
[3 marks]

Question 2

Gode bakeries makes bread at a cost of $\$ 20.00$ per unit. In addition, the bakery has fixed costs of $\$ 25000,000.00$. Each loaf of bread is sold for $\$ 85.00$. How many units must be sold if the Gode is to have a profit of $\$ 25,500.00$? [4 marks]

Question 3

For a firm with Total Cost given by

$$
T C=120+45 q-q^{2}+0.4 q^{3}
$$

And faces a demand curve given by

$$
p=240-20 q
$$

Identify its
a. AC
[2 marks]
b. FC
c. VC
d. AVC
[1 mark]
e. AFC
[1 mark]
f. Profit function.

Question 4

Suppose the public demand for money is given by the formula

$$
M=\alpha Y+\beta(r-\gamma)^{-\delta}
$$

Where M is money supply, Y is national income, r is the interest, while α, β, γ and
δ are positive parameters.
a. Solve the equation for r
[3 marks]
b. For the USA, 1929-1952, the parameters were estimated to $\alpha=0.14, \beta=$ 76.03, $\gamma=2$ and $\delta=0.84$. show that r is given by [5 marks]

$$
r=2+\left(\frac{76.03}{M-0.14 Y}\right)^{\frac{25}{21}}
$$

Question 5

From the following information about the structural equations of a closed economy.

$$
\begin{gathered}
C=50+0.8 Y(\text { consumption function }) \\
I=20-5 R \text { (Investment function) } \\
L=100-R+0.5 Y(\text { Money demand function) } \\
M=200 \text { (Money Supply function) }
\end{gathered}
$$

a. Derive the IS and LM curves.
[4 marks]
b. Solve for equilibrium income.
c. Solve for interest rate.

Question 6

Find the solutions to the following problem
$50000 x+0.08 y=1,000,000$
$\operatorname{Max} x^{0.5} y^{0.5}$ subject to [4 marks]

SECTION B [ANSWER ANY THREE (3) QUESTION]

Question 7

a) A Zimbabwean company, Museyamwa Printers, quotes the price of $\$ 1,600.0$ for printing 100 copies of a report and $\$ 500.00$ for printing 500 copies.

Assuming a linear relation, what would be the price of printing 300 ? [4 marks]
b) The total costs of producing x units of a commodity is

$$
c(x)=12 x^{3}-100 x^{2}+7500 x, \quad x \geq 0
$$

i. Compute the marginal cost function $c^{\prime}(x)$ [4 marks]
ii. For which value of x is the marginal cost the least? [4 marks]
c) if the total savings of a country is a function $S(Y)$ of the national product Y , then $S^{\prime}(Y)$ is the called the marginal propensity to save (MPS). Find the MPS for the following functions

$$
\begin{array}{cll}
\text { i. } & S(Y)=a+b Y & \text { [4 marks }] \\
\text { ii. } & S(Y)=100+10 Y+2 Y^{2} & {[4 \text { marks }]}
\end{array}
$$

Question 8

Solve the utility maximization problem using the Lagrange method

$$
\max u(x, y)=x^{2}+y \quad \text { subject to } \quad x+4 y=200
$$

a. Find the quantities demanded of the two goods?
b. Suppose the income increases from 100 to 101 . What is the exact increase in the optimal value of $u(x, y)$?
[5 marks]?
c. Compare with the values found in (a) and (b) for the Lagrange multiplier.
[5 marks]

Question 9

For what vales of a is B symmetric

a	$a^{2}-1$	-3
$a+1$	2	$a^{2}+4$
-3	$4 a$	-1

Question 10

The cost of producing x units of a commodity is given by

$$
c(x)=1200+300 x+6 x^{2}
$$

a. Compute $c(0), c(100)$, and $c(101)-c(100)$
[6 marks]
b. Compute $c(x+1)-c(x)$, and explain in words the meaning of the difference.

The cost of removing $\mathrm{p} \%$ of the impurities in a lake is given by

$$
b(p)=\frac{10 p}{105-p}
$$

a. Find	$b(0), b(50) \quad$ and $b(100)$	$[6$ marks $]$
b. What does	$b(50+h)-b(50)$ mean? $\quad(h \geq 0)$	$[4$ marks]

Question 11

Use the Cramer's Rule to solve the following systems of equations for x and y . Test the answers by substitution.
(a) $3 x+y=8$
(b) $x+3 y=1$
(c) $\quad a x-b y=1$
$3 x-2 y=14$
$b x+a y=2$
[Each question carries 4 marks]
(d) Find the inverse of

$$
\begin{array}{ccc}
-2 & 3 & 2 \\
6 & 0 & 3 \\
4 & 1 & -1
\end{array}
$$

[8 marks]

