MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES.
FACULTY OF AGRIBUSINESS AND COMMERCE
Agricultural Economics and Development Department

APPLIED AGRICULTURAL PRODUCTION ECONOMICS
CODE: AEDT 211

SEASONAL EXAMINATIONS
JANUARY 2022

DURATION: 3 HOURS
EXAMINER: MR. N. JAMBO

INSTRUCTIONS

1. Answer four (4) questions in total
2. Each question carries 25 marks
3. Total marks 100

QUESTION 1

a) Define production economics
b) Outline any six (6) uses of economics in agriculture
c) Discuss the four (4) factors of production in agriculture.
d) List the four (4) forms in which a production function can be expressed.

QUESTION 2

a) Explain the following types of efficiency.
i. Technical efficiency
ii. Economic efficiency.
iii. Allocative efficiency
b) Discuss the characteristic features of stage 1 in the production process.
c) Determine the state of elasticity of production at the three (3) stages of production. [9]

QUESTION 3

a) Explain the following terms:
i. Isoquant
ii. Marginal Rate of Technical Substitution (MRTS)
b) Consider the Cobb Douglas Production function:

$$
Q=3 X_{1}{ }^{0.5} X_{2}{ }^{0.5}
$$

Where X_{1} and X_{2} are two variable input factors employed in the production of Q . Determine the marginal rate of technical substitution (MRTS) of X_{1} for X_{2}.
c) Suppose you are given the following production functions. Calculate the MRTS of labor (L) for capital (K).
i. $\quad Q=L K$
ii. $\quad Q=3 L+6 K$
iii. $\quad Q=L^{0.4} K^{0.6}$
iv. $\quad Q=4 L^{1 / 3} K^{2 / 3}$

QUESTION 4

a) Suppose you are given a production function: $\boldsymbol{Y}=\mathbf{2 0}+\mathbf{8 X}-\boldsymbol{X}^{\mathbf{2}}$, where the Price of X is $\$ 4$ and the Price of Y is $\$ 8$.
i. Determine the levels of input and output required to maximize profit.
ii. Calculate the optimum profit.
b) Assume that a firm produces its product in a system described in the following production function: $\boldsymbol{Q}=\mathbf{3} \boldsymbol{X}+\mathbf{5} \boldsymbol{Y}+\boldsymbol{X} \boldsymbol{Y}$, where $P_{X}=\$ 3$ and $P_{Y}=\$ 6$

Here, X and Y are two variable input factors employed in the production of Q .
i. It is possible to express the cost function associated with the use of X and Y in the production of Q as Cost $=P_{X} X+P_{Y} Y$ or $\operatorname{Cost}=3 X+6 Y$. Use the Lagrangian technique to determine the maximum output that the firm can produce operating under a R1000 budget constraint for X and Y.
ii. Find the value of lambda (λ)

QUESTION 5

a) Define the Law of Diminishing Marginal Returns
b) Discuss the following laws of returns:
i. Law of increasing returns
ii. Law of constant returns
iii. Law of decreasing returns
c) Consider the following production function:

$$
Y=9 X_{1}-3 X_{1} X_{2}+6 X_{2}
$$

Where: Y is maize output; X_{1} represents the number of units of fertilizer input and X_{2} represents the number of units of seed input.
i. Find the level of X 1 and X 2 required to maximize the maize output.
ii. Suppose the cost of fertilizer per unit is $\$ 2$ and the cost of seed per unit is $\$ 4$. Find the values of X 1 and X 2 that maximize output if the farmer's budget is $\$ 100$. [10]

END OF EXAM

