

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES. FACULTY OF AGRIBUSINESS AND COMMERCE Agricultural Economics and Development Department

APPLIED AGRICULTURAL PRODUCTION ECONOMICS

CODE: AEDT 211

SEASONAL EXAMINATIONS

JANUARY 2022

DURATION: 3 HOURS

EXAMINER: MR. N. JAMBO

INSTRUCTIONS

1. Answer **four** (4) questions in total

2. Each question carries 25 marks

3. Total marks 100

QUESTION 1

QUESTION 2				
d)	List the four (4) forms in which a production function can be expressed.	[4]		
c)	Discuss the four (4) factors of production in agriculture.	[12]		
b)	Outline any six (6) uses of economics in agriculture	[6]		
a)	Define production economics	[3]		

a) Explain the following types of efficiency.

b)	Discuss the characteristic features of stage 1 in the production process.		[10]
	iii.	Allocative efficiency	[2]
	ii.	Economic efficiency.	[2]
	i.	Technical efficiency	[2]

c) Determine the state of elasticity of production at the three (3) stages of production. [9]

QUESTION 3

a) Explain the following terms:

- ii. Marginal Rate of Technical Substitution (MRTS) [2]
- **b)** Consider the Cobb Douglas Production function:

$$Q = 3X_1^{0.5}X_2^{0.5}$$

Where X_1 and X_2 are two variable input factors employed in the production of Q. Determine the marginal rate of technical substitution (MRTS) of X_1 for X_2 . [5]

- c) Suppose you are given the following production functions. Calculate the MRTS of labor (L) for capital (K).
 - i. Q = LK [4]

ii.
$$Q = 3L + 6K$$
 [4]

- iii. $Q = L^{0.4} K^{0.6}$ [4]
- iv. $Q = 4L^{1/3}K^{2/3}$ [4]

QUESTION 4

- a) Suppose you are given a production function: $Y = 20 + 8X X^2$, where the Price of X is \$4 and the Price of Y is \$8.
 - i. Determine the levels of input and output required to maximize profit. [6]

[4]

- ii. Calculate the optimum profit.
- **b)** Assume that a firm produces its product in a system described in the following production function: Q = 3X + 5Y + XY, where $P_X = \$3$ and $P_Y = \$6$ Here, X and Y are two variable input factors employed in the production of Q.
 - i. It is possible to express the cost function associated with the use of X and Y in the production of Q as $Cost = P_X X + P_Y Y$ or Cost = 3X + 6Y. Use the Lagrangian technique to determine the maximum output that the firm can produce operating under a R1000 budget constraint for X and Y. [12]
 - ii. Find the value of lambda (λ) [3]

QUESTION 5

a)	Define the Law of Diminishing Marginal Returns	[2]	
b)	Discuss the following laws of returns:		
	i. Law of increasing returns	[3]	
	ii. Law of constant returns	[3]	

- iii. Law of decreasing returns [3]
- c) Consider the following production function:

$$Y = 9X_1 - 3X_1X_2 + 6X_2$$

Where: Y is maize output; X_1 represents the number of units of fertilizer input and X_2 represents the number of units of seed input.

- i. Find the level of X1 and X2 required to maximize the maize output. [4]
- ii. Suppose the cost of fertilizer per unit is \$2 and the cost of seed per unit is \$4. Find the values of X1 and X2 that maximize output if the farmer's budget is \$100. [10]

END OF EXAM