

MANICALAND STATE UNIVERSITY

OF APPLIED SCIENCES

FACULTY OF ENGINEERING

CHEMICAL AND PROCESSING ENGINEERING PHYSICAL CHEMISTRY FOR ENGINEERS/ PHYSICAL CHEMISTRY CODE: ENGT104/HCHE112 SESSIONAL EXAMINATIONS OCTOBER 2021 LECTURER: MR M. MAPOSA DURATION: 3 HOURS

INSTRUCTIONS

- 1. Answer **all** questions in section A and **three** questions in section B
- 2. Each question carries 25 marks
- 3. Total marks 100

ADDITIONAL MATERIAL Periodic table

Page 1 of 6

SECTION A

Answer all questions in this section

QUESTION 1

(a) State any two limitations of classical mechanics which necessitated the birth of quantum mechanics [2 marks]
(b) Explain the following terms i) quantum

(b) Explain the following terms i) quantum

ii) wave particle duality [4 marks]

(c) State first **three** postulates of quantum mechanics [3 marks]

(d) Write brief notes on

i) unimolecular reactions

- ii) bimolecular reactions
- iii) rate equation
- iv) steady state approximation
- v) mechanism of reaction

[10 marks]

[6 marks]

(e) Describe the instrumentation and applications of the following spectroscopic techniques

i. UV-Vis

ii. FTIR

iii. iii) Raman Spectroscopy

SECTION B

Answer any three questions in this section

QUESTION 2

In this question you may want to use the following constants:

 $1 \text{ eV}= 1.602 \text{ x } 10^{-19} \text{ J}, \text{ h} = 6.63 \text{ x } 10^{-34} \text{ Js}, \text{ mass of an electron} = 9.11 \text{ x} 10 \text{ kg}$

- a) During a lecture on photoelectric effect, the lecturer gave this statement as part of the introduction; "One of the factors that affect photoelectric emission is the threshold frequency of the metal" Explain the meaning of the terms
 - i) photoelectric equation
 - ii) Photoelectric emission
 - iii) Threshold frequency [6 marks]
- b) Suggest any other factor besides threshold frequency which affect photoelectric emission [1 marks]
- c) i) Briefly explain the three laws of photoelectric emission
 ii) Give any **four** applications of photoelectric emission [7 marks]
- d) The work function of zinc, silver and sodium are 4.31 eV, 4.73 eV and 2.28 eV respectively. Use the photoelectric equation to calculate
 - i) Maximum kinetic energy of an electron ejected from silver by a 3.13 $x10^{15}$ hz [3 marks]
 - ii) Maximum kinetic energy and velocity of the ejected electrons from zinc using 275 nm photon [3 marks]
 - iii) The threshold frequency for the emission of photoelectrons from the surface of sodium metal, and hence the maximum wavelength of light that can cause photoemission. [5 marks]

QUESTION 3

- a) Sketch a graph to show how rate of reaction depends on concentration in a first order reaction. [3 marks]
- b) State the Arrhenius equation and explain each term present in the equation [4 marks]
- c) The rate constants for the reaction $A_2 + B_2 = 2AB$ were measured at five different temperatures. The results are shown in Table 2

Page 3 of 6

Page 4 of 6

	Table 2	
Experiment	Rate constant (k)/ s ⁻¹	Temperature/K
1	1.25 x 10 ⁻⁹	250
2	2.27 x 10 ⁻⁸	303
3	6.81 x 10 ⁻⁷	400
4	3.73 x 10 ⁻⁶	500
5	4.11 x 10 ⁻⁷	667
i) Rewrite Arrhenius equation using natural logarithms		
ii) Produce a completed table of ln k and 1/T using the data from the table		
iii) Plot a g	raph of ln K against 1/T	
iv) Use the graph to deduce the activation energy of the reaction [13 marks]		
d) In another experiment the rate constant of the reaction $H_2 + I_2 = 2HI$ was		
measured at two different temperatures.		
At 600 K , $k = 2.15 \text{ x } 10^{-7} \text{ s}^{-1}$ At 700 K , $k = 2.39 \text{ x } 10^{-6} \text{ s}^{-1}$		
Calculate the ac	tivation energy of the reaction	[5 marks]
Question 4		
a) What do you un	derstand by the term complex reaction?	[2 marks]
b) Compare and co	ontrast the Linderman and the RRKM theories	[6 marks]
c) Describe		
i) Chain r	eactions	
ii) Reactio	n intermediate	
iii) Elemen	tary step of a mechanism	
iv) Adiabat	tic modes of vibration	
v) Active	modes of vibration	[10 marks]
d) Steady state approximation can be used to deduce the rate law from elementary		
steps. Given that		
$A + M = A^* + M k_1$ Activation of A via collisions		
Page 5 of 6		

 $A^* + M = A + M k_{-1}$ Deactivation of A^* via collisions $A^* = P$ k_2 Spontaneous decomposition of A^* (where M is any particle which can be an inert particle, a molecule of theproduct P or another particle of A), use steady state approximation to deducethat

i)
$$[A^*] = k_1[A][M] / k_{-1}[M] + k_2$$

ii)
$$dP/dt = k_2 k_1[A][M] / k_1[M] + k_2$$
 [7 marks]

QUESTION 5

- a) State Beer's law [1 mark]
- b) Describe the concept of molecular spectroscopy [3 marks]
- c) An aqueous solution of substance X was analysed using UV-VIS at a wavelength of 275 nm at which molar absorptivity is €= 8400 M⁻¹cm⁻¹. The pathlength was 1 cm. the absorbance (A₂₇₅) was found to be 70. What was the concentration of X in the sample? [5 marks]
- d) During the analysis of dye concentration in a sample, a set of five standards were analysed at 500 nm to produce a calibration curve before running the sample. The equation of the line of best fit was found to be y = 1.65x 0.05 where y is the absorbance, x is the concentration. If the sample gave an absorbance reading of 0.85, what will be the concentration of the dye in the sample? [4 marks]
- e) Calculate the number of degrees of freedom for the following molecules
 - i) CO₂
 - ii) SO₂
 - iii) CH₄
 - iv) HCN

END OF EXAM

[12 marks]