

MANICALAND STATE UNIVERSITY

OF APPLIED SCIENCES

FACULTY OF ENGINEERING

CHEMICAL AND PROCESSING ENGINEERING DEPARTMENT

CHEMICAL REACTION ENGINEERING I

CODE: HCHE 221

SESSIONAL EXAMINATIONS OCTOBER 2021

DURATION: 3 HOURS

EXAMINER: DR M. CHIGONDO

INSTRUCTIONS

- 1. Answer all questions in Section A
- 2. Answer four questions from Section B
- 3. Total marks 100

Page 1 of 8

Section A:

Question 1

(a) Define the following:

- (i) *rate of reaction*
- (ii) rate constant
- *(iii) reaction mechanism*
- (iv) order of reaction

(b) For a gas reaction at 400 K, the rate is reported as

$$\frac{dpA}{dt} = 3.0 \text{ p}_{\text{A}}^2 \text{ atm/h}$$

(i) What are the units of the rate constant?

(c) What is the value of the rate constant for this reaction if the rate equation is written as

(i)
$$r_{A} = \frac{-1}{V} \frac{dNA}{dt} = k C_{A}^{2}, \text{ mol/L.h}$$
 [2]

(ii)
$$r_A = k C_A^2$$
, mol/m³.s

Question 2

(a) In a reaction between A and B, the initial rate of reaction (r₀) was measured for different initial concentrations of A and B as given in Table 1.

Table 1				
A/ mol L ⁻¹	0.2	0.2	0.4	
B/ mol L ⁻¹	0.3	0.1	0.05	
r ₀ /mol L ⁻¹ s ⁻¹	$5.07 imes 10^{-5}$	$5.07 imes 10^{-5}$	1.43×10^{-4}	

What is the order of the reaction with respect to *A* and *B*? [5]

- (b) Consider a certain reaction A → Products with k = 2.0 × 10⁻² s⁻¹. Calculate the concentration of A remaining after 100 s if the initial concentration of A is 1.0 mol L⁻¹
 [3]
- (c) Aqueous *A* reacts to form *R* ($A \rightarrow R$) and in the first minute in MFR its concentration drops from $C_{AO} = 2.03$ to $C_M = 1.97$ mol/L.

Find: (i) the rate equation for the reaction if the kinetics are second order with respect

Page 2 of 8

. .

[2]

[2]

[4]

to A.

(ii) the conversion after 5 minutes.

Question three

(a) The schematic reaction $A + M \rightarrow P$ is assumed to consist of two elementary steps:

- 1. $A + M \rightarrow A^* + M$ (forward reaction rate = k_l ;
- 2. reverse reaction rate = k_{-1})

 $A^* \rightarrow P$ (forward reaction rate = k_2). Show that using steady state approximation

$$\frac{d[P]}{dt} = \frac{k_1 k_2 [A] [M]}{k_{-1} [M] + k_2)}.$$
[5]

A liquid feed of 66.6% A and 33.3% inert enters a CSTR at 27 °C, 580 kPa and at a flow rate of 55 L/min, which is operated adiabatically. The reaction $A \rightarrow B + C$ is an elementary irreversible reaction. Calculate the volume necessary to achieve 90% conversion [5]

(b) Reactant A decomposes as follows

$$3A \rightarrow B_4 + 2C_2$$

At a given instant, the rate of decomposition of A is $1.0 \times 10^{-3} mol/Ls$

(i) Express the rate in three different ways using the differential notation [3]

(ii) determine the rate of formation of B_4 and of C_2

Section B:

Answer any four questions, each question carries 20 marks

Question four

(a) (i) What are multiple reactions?	[1]
(ii) Explain.	[2]
(b) A homogeneous gas phase reaction $A \rightarrow 3R$ satisfactorily follo	ws second order

kinetics. For a feed rate 4 m³/h of pure A 350 °C and 5 atm, an experimental reactor

(25 mm ID pipe x 2 mm long) gives 60 % conversion of feed. A commercial plant is Page 3 of 8

[2]

to handle 320 m³/h of feed containing 50 % A and 50 % inerts at 350 °C and 25 atm obtaining 80 % conversion of A.

B			•			
(i) how many 2 m lengths of 25 mm ID pipe are required?						[5]
(ii) Should they be parallel or in series					[5]	
(Assume p	lug flow in	pipe and	ideal gas be	chavior)		
(c) Write	orief notes o	on the foll	lowing type	s of reactors	5:	
(ii) CSTR						[3]
(iii) Plug Flow Reactor.					[4]	
Question	live					
(a) What is a batch reactor?					[1]	
(b) What are the advantages and disadvantages of a batch reactor?					[5]	
(c) An aqu	eous conce	ntration is	s introduced	into a batc	h reactor where	it reacts away
to form	n product <i>R</i>	accordin	g to stoichio	ometry A —	$\rightarrow R$. The concent	tration of A in
the rea	ctor is mon	itored at v	various rates	s as shown i	in Table 2.	
			Tabl	e 2		
Time (mi	n) 0	100	200	300	400	
C _A (mol/r	n ³ 1000	500	333	250	200	
Given that	$C_{Ao} = 500$ m	nol/m ³ .				
	(i) the conv		ter 5 hours			

(ii) rate equation to fit the data

[5]

(d) A gaseous reactant A decomposes as follow:

 $A \rightarrow 4R$, $r_A = (0.6min^{-1}) C_A$

Find the conversion of A in a 50% A – 50 % inert feed ($v_o = 90$ L/min, $C_A = 150$ mmol/L) to 0.5 dm³ MFR reactor. [5]

(e) (i) What is a *semi-batch reactor*?

(ii) With the aid of diagram show the different types of semi-batch reactors Page 4 of 8

Question six

(a) A flow rate of $F_{AO} = 1$ L/s of 10% ozone -90% air mixture at a total pressure of 1.5 atm and 93 °C passes through a reactor. Under these conditions ozone decomposes as follows $2O_3 \rightarrow 3O_2$ with the second order rate, $r_{O3} = 0.05C_{O3}^2 \text{ mol/Ls}$ [R = 0.0831 atm/ K mol] $p_A = C_A o \operatorname{RT}$ i. Determine ε_A and C_{Ao} [3] Find the residence time needed for 50% decomposition of ozone the size of a 1. PFR [4] [3] 2. MFR (b) A gaseous high molecular weight compound A is fed continuously to a heated high temperature MFR where it thermally cracks into lower molecular weight materials, collectively called R, by a stoichiometry approximated by $A \rightarrow 5R$. By changing the feed rate, different extents of cracking are obtained as follows: 5000 F_{Ao} mol/h 300 1000 3000 C_{Aout} mol/L 16 30 50 60 V = 0.1 L, $C_{AO} = 100$ mol/L. Find the rate equation that represents the cracking [10] **Question seven** Explain the elementary and non-elementary reactions. [2] a. State four factors to be considered for reactor design b. [4] Define *space time* and *space velocity* [2] c. 1 liter per minute of liquid containing A and B ($C_{AO} = 0.10 \text{ mol/L}, C_{BO} = 0.01$ d. mol/L) flow into a mixed reactor of volume V = 2 liters. The materials react

Page 5 of 8

in a complex manner for which the stoichiometry is unknown. The outlet stream from the reactor contains A, B, and C ($C_{Af} = 0.02 \text{ mol/L}$, $C_{Bf} = 0.03 \text{ mol/L}$, $C_{Cf} = 0.04 \text{ mol/L}$), Find the rate of reaction of A, B and C for the conditions within the reactor. [6]

e. A specific enzyme acts as a catalyst in fermentation of reactant *A*. At a given enzyme concentration in aqueous feed of 25 L/min, find the volume of the MFR reactor needed for 90 % conversion of reactant A (C_{Ao} = 2 mo/L). The kinetics of the fermentation reaction at this enzyme concentration is given by

$$\mathbf{A} \rightarrow \mathbf{R}, \qquad \mathbf{r}_{\mathbf{A}} = \frac{\mathbf{0.1}C_A}{\mathbf{1} + \mathbf{0.5} C_A} \frac{mol}{liter.min} \tag{6}$$

END OF EXAM

TABLE OF FORMULAE

BATCH REACTOR

$$t = N_{Ao} \int_{0}^{X_A} \frac{dX_A}{-r_A V}$$

$$t = C_{AO} \int_{0}^{X_A} \frac{dX_A}{-r_A} = -\int_{C_{AO}}^{C_A} \frac{dC_A}{-r_A}$$

$$\tau = N_{AO} \int_{0}^{X_A} \frac{dX_A}{(-r_A)V_o(1 + \varepsilon_A X_A)} = C_{AO} \int_{0}^{X_A} \frac{dX_A}{(-r_A)(1 + \varepsilon_A X_A)}$$

MIXED FLOW REACTOR

$$\frac{V}{F_{AO}} = \frac{\tau}{C_{AO}} = \frac{\Delta X_A}{-r_A} = \frac{X_A}{-r_A}$$
$$\tau = \frac{1}{s} = \frac{V}{v_O} = \frac{VC_o}{F_{AO}} = \frac{C_{AO}X_A}{-r_A}$$
or
$$\frac{V}{F_{AO}} = \frac{\Delta X_A}{(-r_A)f} = \frac{X_{Af-}X_{Ai}}{(-r_A)f}$$
or
$$\tau = \frac{VC_o}{F_{AO}} = \frac{C_{AO}(X_{Af-}X_{Ai})}{(-r_A)f}$$
$$\frac{V}{F_{AO}} = \frac{X_A}{-r_A} = \frac{C_{AO-}C_A}{C_{AO}(-r_A)}$$
or
$$\tau = \frac{V}{v} = \frac{C_{AO}X_A}{-r_A} = \frac{C_{AO-}C_A}{-r_A}$$

PLUG FLOW REACTOR

$$\frac{V}{F_{AO}} = \frac{\tau}{C_{AO}} = \int_{0}^{X_{Af}} \frac{dX_A}{-r_A} \qquad \tau = \frac{V}{v_O} = C_{AO} \int_{0}^{X_{Af}} \frac{dX_A}{-r_A}$$
$$\frac{V}{F_{AO}} = \frac{V}{C_{AOvo}} = \int_{AI}^{X_{Af}} \frac{dX_A}{-r_A} \qquad \tau = \frac{V}{v_O} = C_{AO} \int_{AI}^{X_{Af}} \frac{dX_A}{-r_A}$$
$$\frac{V}{F_{AO}} = \frac{\tau}{c_{AO}} = \int_{0}^{X_{Af}} \frac{dX_A}{-r_A} = -\frac{1}{c_{AO}} \int_{AO}^{X_{Af}} \frac{dC_A}{-r_A}$$
$$\tau = \frac{V}{v_O} = C_{AO} \int_{0}^{X_{AI}} \frac{dX_A}{-r_A} = -\int_{AO}^{X_{Af}} \frac{dC_A}{-r_A}$$
$$X_A = \mathbf{1} - \frac{C_A}{c_{AO}} \quad \mathbf{and} \qquad dX_A = -\frac{dC_A}{c_{AO}}$$

Page 7 of 8

	Plug Flow	Mixed Flow
n = 0 $r_{\Lambda} = k$	$\frac{k\tau}{C_{AB}} = X_A$	$\frac{k\tau}{C_{A0}} = X_A$
n = 1 $r_{\rm A} = kC_{\rm A}$	$k\tau = (1 + \varepsilon_A) \ln \frac{1}{1 - X_A} - \varepsilon_A X_A$	$k\tau = \frac{X_{\Lambda}(1 + e_{\Lambda}X_{\Lambda})}{1 - X_{\Lambda}}$
n = 2 $r_A = kC_A^2$	$k\tau C_{A0} = 2\varepsilon_A (1+\varepsilon_A) \ln(1-X_A) + \varepsilon_A^2 X_A + (\varepsilon_A+1)^2 \cdot \frac{X_A}{1-X_A}$	$k \tau C_{AB} = \frac{X_A (1 + \varepsilon_A X_A)^2}{(1 - X_A)^2}$
any n $r_A = kC_A^n$		$k\tau C_{AB}^{n-1} = \frac{X_A(1 + \varepsilon_A X_A)^n}{(1 - X_A)^n}$
n = 1 $A \stackrel{i}{\underset{1}{\longleftarrow}} rR$ $C_{R0} = 0$	$\frac{k\tau}{X_{Ar}} = (1 + \varepsilon_A X_{Ar}) \ln \frac{X_{Ar}}{X_{Ar} - X_A} - \varepsilon_A X_A$	$\frac{k\tau}{X_{Ar}} = \frac{X_A(1+\varepsilon_A X_A)}{X_{Ar} - X_A}$
General expression	$\tau = C_{A3} \int_{0}^{X_{A}} \frac{dX_{A}}{-r_{A}}$	$\tau = \frac{C_{AB}X_A}{-r_A}$

	Performance Equations for nth-order K	Sinctics and $e_A = 0$
	Plug Flow or Batch	Mixed Flow
$n = 0$ $-r_{A} = k$	$\frac{k\tau}{C_{A0}} = \frac{C_{A0} - C_A}{C_{A0}} = X_A$	$\frac{k\tau}{C_{A0}} = \frac{C_{A0} - C_A}{C_{A0}} = X_A$
$n = 1$ $-r_{\rm A} = kC_{\rm A}$	$k\tau = \ln \frac{C_{A0}}{C_A} = \ln \frac{1}{1 - X_A}$	$k\tau = \frac{C_{A0} - C_A}{C_A} = \frac{X_A}{1 - X_A}$
$n = 2$ $-r_{\rm A} = kC_{\rm A}^2$	$k\tau C_{A0} = \frac{C_{A0} - C_A}{C_A} = \frac{X_A}{1 - X_A}$	$k\tau = \frac{(C_{A0} - C_A)}{C_A^2} = \frac{X_A}{C_{A0}(1 - X_A)^2}$
$ \begin{array}{l} \operatorname{any} n \\ -r_{\mathrm{A}} = kC_{\mathrm{A}}^{n} \end{array} $	$(n-1)C_{A0}^{n-1}k\tau = \left(\frac{C_A}{C_{A0}}\right)^{1-n} - 1 = (1-X_A)^{1-n} - 1$	$k\tau = \frac{C_{A0} - C_A}{C_A^n} = \frac{X_A}{C_{A0}^{n-1}(1 - X_A)^n}$
n = 1 $A \stackrel{1}{\underset{2}{\longrightarrow}} R$	$k_{1\tau} = \left(1 - \frac{C_{Ae}}{C_{A0}}\right) \ln\left(\frac{C_{A0} - C_{Ae}}{C_{A} - C_{Ae}}\right) = X_{Ae} \ln\left(\frac{X_{Ae}}{X_{Ae} - X_{A}}\right)$	$k_{1}\tau = \frac{(C_{A0} - C_{A})(C_{A0} - C_{Ae})}{C_{A0}(C_{A} - C_{Ae})} = \frac{X_{A}X_{Ae}}{X_{Ae} - X_{A}}$
$\frac{C_{\rm R0} = 0}{\rm General \ rate}$	$\tau = \int_{C_A}^{C_{A0}} \frac{dC_A}{-r_A} = C_{A0} \int_0^{X_{Ac}} \frac{dX_A}{-r_A}$	$\tau = \frac{C_{A0} - C_A}{-r_{Af}} = \frac{C_{A0}X_A}{-r_{Af}}$

Page 8 of 8