

MANICALAND STATE UNIVERSITY OF APPLIED SCIENCES

FACULTY OF ENGINEERING

CHEMICAL AND PROCESSING ENGINEERING DEPARTMENT

CHEMICAL REACTION ENGINEERING I

CODE: HCHE 221

SESSIONAL EXAMINATIONS
OCTOBER 2021

DURATION: 3 HOURS
EXAMINER: DR M. CHIGONDO

Section A:

Question 1

(a) Define the following:
(i) rate of reaction
(ii) rate constant
(iii) reaction mechanism
(iv) order of reaction
(b) For a gas reaction at 400 K , the rate is reported as

$$
\frac{d p A}{d t}=3.0 \mathrm{p}_{\mathrm{A}}^{2} \mathrm{~atm} / \mathrm{h}
$$

(i) What are the units of the rate constant?
(c) What is the value of the rate constant for this reaction if the rate equation is written as
(i) $\quad \mathrm{r}_{\mathrm{A}}=\frac{-1}{V} \frac{d N A}{d t}=\mathrm{k} \mathrm{C}_{\mathrm{A}}{ }^{2}, \mathrm{~mol} / \mathrm{L} . \mathrm{h}$
(ii) $\mathrm{r}_{\mathrm{A}}=\mathrm{k} \mathrm{C}_{\mathrm{A}}{ }^{2}, \mathrm{~mol} / \mathrm{m}^{3} . \mathrm{s}$

Question 2

(a) In a reaction between A and B, the initial rate of reaction $\left(\mathrm{r}_{0}\right)$ was measured for different initial concentrations of A and B as given in Table 1.

Table 1

$\mathbf{A} / \mathbf{m o l ~ L}^{-1}$	0.2	0.2	0.4
$\mathbf{B} / \mathbf{m o l ~ L}^{-1}$	0.3	0.1	0.05
$\mathbf{r}_{0} / \mathbf{m o l ~ L}^{-1} \mathbf{s}^{-1}$	5.07×10^{-5}	5.07×10^{-5}	1.43×10^{-4}

What is the order of the reaction with respect to A and B ?
(b) Consider a certain reaction $A \rightarrow$ Products with $k=2.0 \times 10^{-2} \mathrm{~s}^{-1}$. Calculate the concentration of A remaining after 100 s if the initial concentration of A is 1.0 mol L ${ }^{-1}$
(c) Aqueous A reacts to form $R(A \rightarrow R)$ and in the first minute in MFR its concentration drops from $C_{A O}=2.03$ to $C_{M}=1.97 \mathrm{~mol} / \mathrm{L}$.
Find: (i) the rate equation for the reaction if the kinetics are second order with respect

Page $\mathbf{2}$ of $\mathbf{8}$

to A.
(ii) the conversion after 5 minutes.

Question three

(a) The schematic reaction $A+M \rightarrow P$ is assumed to consist of two elementary steps:

1. $A+M \rightarrow A^{*}+\mathrm{M}$ (forward reaction rate $=k_{l}$;
2. reverse reaction rate $=k_{-1}$)
$A^{*} \rightarrow P$ (forward reaction rate $=k_{2}$). Show that using steady state approximation

$$
\begin{equation*}
\frac{\mathrm{d}[\mathrm{P}]}{d t}=\frac{k 1 k 2[A][M])}{\left.k_{-1}[M]+k_{2}\right)} \tag{5}
\end{equation*}
$$

A liquid feed of $66.6 \% \mathrm{~A}$ and 33.3% inert enters a CSTR at $27^{\circ} \mathrm{C}, 580 \mathrm{kPa}$ and at a flow rate of $55 \mathrm{~L} / \mathrm{min}$, which is operated adiabatically. The reaction $A \rightarrow B+C$ is an elementary irreversible reaction. Calculate the volume necessary to achieve 90% conversion
(b) Reactant A decomposes as follows
$3 A \rightarrow B_{4}+2 C_{2}$
At a given instant, the rate of decomposition of A is $1.0 \times 10^{-3} \mathrm{~mol} / \mathrm{Ls}$
(i) Express the rate in three different ways using the differential notation
(ii) determine the rate of formation of B_{4} and of C_{2}

Section B:

Answer any four questions, each question carries 20 marks

Question four

(a) (i) What are multiple reactions?
(ii) Explain.
(b) A homogeneous gas phase reaction $A \rightarrow 3 R$ satisfactorily follows second order kinetics. For a feed rate $4 \mathrm{~m}^{3} / \mathrm{h}$ of pure $A 350^{\circ} \mathrm{C}$ and 5 atm , an experimental reactor (25 mm ID pipe $\times 2 \mathrm{~mm}$ long) gives 60% conversion of feed. A commercial plant is Page $\mathbf{3}$ of $\mathbf{8}$
to handle $320 \mathrm{~m}^{3} / \mathrm{h}$ of feed containing $50 \% \mathrm{~A}$ and 50% inerts at $350{ }^{\circ} \mathrm{C}$ and 25 atm obtaining 80% conversion of A.
(i) how many 2 m lengths of 25 mm ID pipe are required?
(ii) Should they be parallel or in series
(Assume plug flow in pipe and ideal gas behavior)
(c) Write brief notes on the following types of reactors:
(ii) CSTR
(iii) Plug Flow Reactor.

Question five

(a) What is a batch reactor?
(b) What are the advantages and disadvantages of a batch reactor?
(c) An aqueous concentration is introduced into a batch reactor where it reacts away to form product R according to stoichiometry $A \rightarrow R$. The concentration of A in the reactor is monitored at various rates as shown in Table 2.

Table 2

Time (min)	0	100	200	300	400
$\mathrm{C}_{\mathrm{A}}\left(\mathrm{mol} / \mathrm{m}^{3}\right.$	1000	500	333	250	200

Given that $C_{A o}=500 \mathrm{~mol} / \mathrm{m}^{3}$.
Determine (i) the conversion after 5 hours

> (ii) rate equation to fit the data
(d) A gaseous reactant A decomposes as follow:

$$
\boldsymbol{A} \rightarrow 4 \boldsymbol{R}, r_{A}=\left(0.6 \mathrm{~min}^{-1}\right) C_{A}
$$

Find the conversion of A in a $50 \% \mathrm{~A}-50 \%$ inert feed $\left(\mathrm{v}_{\mathrm{o}}=90 \mathrm{~L} / \mathrm{min}, \mathrm{C}_{\mathrm{A}}=150\right.$ $\mathrm{mmol} / \mathrm{L}$) to $0.5 \mathrm{dm}^{3} \mathrm{MFR}$ reactor.
(e) (i) What is a semi-batch reactor?
(ii) With the aid of diagram show the different types of semi-batch reactors Page 4 of 8

Question six

(a) A flow rate of $F_{A O}=1 \mathrm{~L} / \mathrm{s}$ of 10% ozone -90% air mixture at a total pressure of 1.5 atm and $93{ }^{\circ} \mathrm{C}$ passes through a reactor. Under these conditions ozone decomposes as follows

$$
\begin{array}{lc}
2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2} \text { with the second order rate, } & r_{O 3}=0.05 C_{O 3}^{2} \mathrm{~mol} / \mathrm{Ls} \\
p_{A}=C_{A} o \mathrm{RT} & {[\mathrm{R}=0.0831 \mathrm{~atm} / \mathrm{K} \mathrm{~mol}]}
\end{array}
$$

i. Determine ε_{A} and $C_{A o}$

Find the residence time needed for 50% decomposition of ozone the size of a

1. PFR
2. MFR
(b) A gaseous high molecular weight compound A is fed continuously to a heated high temperature MFR where it thermally cracks into lower molecular weight materials, collectively called R , by a stoichiometry approximated by $A \rightarrow 5 R$. By changing the feed rate, different extents of cracking are obtained as follows:

$\mathrm{F}_{\mathrm{Ao}} \mathrm{mol} / \mathrm{h}$	300	1000	3000	5000
$\mathrm{C}_{\text {Aout }} \mathrm{mol} / \mathrm{L}$	16	30	50	60

$V=0.1 \mathrm{~L}, C_{A O}=100 \mathrm{~mol} / \mathrm{L}$.
Find the rate equation that represents the cracking

Question seven

a. Explain the elementary and non-elementary reactions.
b. State four factors to be considered for reactor design
c. Define space time and space velocity
d. 1 liter per minute of liquid containing A and $\mathrm{B}\left(C_{A O}=0.10 \mathrm{~mol} / \mathrm{L}, C_{B O}=0.01\right.$ $\mathrm{mol} / \mathrm{L}$) flow into a mixed reactor of volume $V=2$ liters. The materials react

Page 5 of $\mathbf{8}$

in a complex manner for which the stoichiometry is unknown. The outlet stream from the reactor contains A, B, and C $\left(C_{A f}=0.02 \mathrm{~mol} / \mathrm{L}, C_{B f}=0.03\right.$ $\mathrm{moll} / \mathrm{L}, C_{C f}=0.04 \mathrm{~mol} / \mathrm{L}$), Find the rate of reaction of A, B and C for the conditions within the reactor.
e. A specific enzyme acts as a catalyst in fermentation of reactant A. At a given enzyme concentration in aqueous feed of $25 \mathrm{~L} / \mathrm{min}$, find the volume of the MFR reactor needed for 90% conversion of reactant $\mathrm{A}\left(C_{A o}=2 \mathrm{mo} / \mathrm{L}\right)$. The kinetics of the fermentation reaction at this enzyme concentration is given by

$$
\begin{equation*}
\mathrm{A} \rightarrow \mathrm{R}, \quad \mathrm{r}_{\mathrm{A}}=\frac{0.1 C_{A}}{1+0.5 C_{A}} \frac{\mathrm{~mol}}{\text { liter } \cdot \min } \tag{6}
\end{equation*}
$$

END OF EXAM

TABLE OF FORMULAE

BATCH REACTOR

$t=N_{A o} \int_{0}^{X_{A}} \frac{d X_{A}}{-r_{A} V}$
$t=C_{A O} \int_{0}^{X_{A}} \frac{d X_{A}}{-r_{A}}=-\int_{C_{A O}}^{C_{A}} \frac{d C_{A}}{-r_{A}}$
$\tau=N_{A O} \int_{o}^{X_{A}} \frac{d X_{A}}{\left(-r_{A}\right) V_{o}\left(1+\varepsilon_{A} X_{A}\right)}=C_{A O} \int_{o}^{X_{A}} \frac{d X_{A}}{\left(-r_{A}\right)\left(1+\varepsilon_{A} X_{A}\right)}$

MIXED FLOW REACTOR

$\frac{V}{F_{A O}}=\frac{\tau}{C_{A O}}=\frac{\Delta X_{A}}{-r_{A}}=\frac{X_{A}}{-r_{A}}$
or
$\frac{V}{F_{A O}}=\frac{\Delta X_{A}}{\left(-r_{A}\right) f}=\frac{X_{A f-} X_{A i}}{\left(-r_{A}\right) f}$
$\frac{V}{F_{A O}}=\frac{X_{A}}{-r_{A}}=\frac{C_{A O-} C_{A}}{C_{A O}\left(-r_{A}\right)}$
or
or

$$
\begin{gathered}
\tau=\frac{1}{s}=\frac{V}{v_{O}}=\frac{V C_{o}}{F_{A O}}=\frac{C_{A O} X_{A}}{-r_{A}} \\
\tau=\frac{V C_{o}}{F_{A O}}=\frac{C_{A O}\left(X_{A f-} X_{A i}\right)}{\left(-r_{A}\right) f} \\
\tau=\frac{V}{v}=\frac{C_{A o} X_{A}}{-r_{A}}=\frac{C_{A O}-C_{A}}{-r_{A}}
\end{gathered}
$$

PLUG FLOW REACTOR

$\frac{V}{F_{A O}}=\frac{\tau}{C_{A O}}=\int_{0}^{X_{A f}} \frac{d X_{A}}{-r_{A}}$
$\tau=\frac{V}{v_{O}}=C_{A O} \int_{0}^{X_{A f}} \frac{d X_{A}}{-r_{A}}$
$\frac{V}{F_{A O}}=\frac{V}{C_{A O v o}}=\int_{A I}^{X_{A f}} \frac{d X_{A}}{-r_{A}}$
$\tau=\frac{V}{v_{O}}=C_{A O} \int_{A I}^{X_{A f}} \frac{d X_{A}}{-r_{A}}$
$\frac{V}{F_{A O}}=\frac{\tau}{C_{A O}}=\int_{0}^{X_{A f}} \frac{d X_{A}}{-r_{A}}=-\frac{1}{C_{A O}} \int_{A O}^{X_{A f}} \frac{d C_{A}}{-r_{A}}$
$\tau=\frac{V}{v_{O}}=C_{A O} \int_{0}^{X_{A I}} \frac{d X_{A}}{-r_{A}}=-\int_{A O}^{X_{A f}} \frac{d C_{A}}{-r_{A}}$
$X_{A}=1-\frac{C_{A}}{C_{A O}}$ and $d X_{A}=-\frac{d C_{A}}{C_{A O}}$

Performance Equatioss for n th-order Kinetics and $\varepsilon_{A} \neq 0$		
	Plug Flow	Mixed Flow
$\begin{aligned} n & =0 \\ -r_{\mathrm{A}} & =k \end{aligned}$	$\frac{k_{r}}{C_{n s}}=X_{\lambda}$	$\frac{k_{\tau}}{C_{A t}}=X_{\mathrm{A}}$
$\begin{aligned} n & =1 \\ -r_{A} & =k C_{A} \end{aligned}$	$k T=\left(1+\varepsilon_{A}\right)\left(\mathrm{n} \frac{1}{1-X_{A}}-\varepsilon_{A} X_{A}\right.$	$k_{r}=\frac{X_{A}\left(1+\varepsilon_{A} X_{A}\right)}{1-X_{A}}$
$\begin{aligned} n & =2 \\ -r_{A} & =k C_{\lambda}^{2} \end{aligned}$	$k T C_{N 0}=2 \varepsilon_{A}\left(1+\varepsilon_{\lambda}\right) \ln \left(1-X_{\lambda}\right)+\varepsilon_{\lambda} X_{\lambda}+\left(\varepsilon_{\lambda}+1\right)^{2} \cdot \frac{X_{\lambda}}{1-X_{\lambda}}$	$k r C_{N}=\frac{X_{\Delta}\left(1+\varepsilon_{A} X_{A}\right)^{2}}{\left(1-X_{A}\right)^{2}}$
$\begin{gathered} \text { any } n \\ -r_{A}=k C_{A} \end{gathered}$		$k_{r} C_{\lambda a}^{-1}=\frac{X_{\lambda}\left(1+\varepsilon_{A} X_{A}\right)^{r}}{\left(1-X_{\lambda}\right)^{r}}$
$\begin{gathered} n=1 \\ \mathrm{~A}=\mathrm{IR} \\ C_{\mathrm{R}}=0 \end{gathered}$	$\frac{k \tau}{X_{N}}=\left(1+\varepsilon_{A} X_{\lambda}\right) \ln \frac{X_{\lambda}}{X_{N}-X_{A}}-\varepsilon_{A} X_{\lambda}$	$\frac{k_{\tau}}{X_{\lambda}}=\frac{X_{\lambda}\left(1+\varepsilon_{\lambda} X_{\lambda}\right)}{X_{\lambda}-X_{A}}$
Gencral expression	$t=C_{N S} \int_{0} x_{0} \frac{d X_{A}}{-r_{A}}$	$\mathrm{T}=\frac{C_{N} X_{A}}{-r_{\lambda}}$
Performance Equations for n th-order Kineues and $\varepsilon_{\mathrm{A}}=0$		
	Plug Flow or Batch	Mixed Flow
$\begin{aligned} n & =0 \\ -r_{\mathrm{A}} & =k \end{aligned}$	$\frac{k \tau}{C_{A 0}}=\frac{C_{A 0}-C_{\mathrm{A}}}{C_{\mathrm{A} 0}}=X_{\mathrm{A}}$	$\frac{k \tau}{C_{\lambda 0}}=\frac{C_{\Lambda 0}-C_{\Lambda}}{C_{\lambda 0}}=X_{\lambda}$
$\begin{aligned} & n=1 \\ &-r_{\mathrm{A}}=k C_{\mathrm{A}} \\ & \hline \end{aligned}$	$k r=\ln \frac{C_{A 0}}{C_{\mathrm{A}}}=\ln \frac{1}{1-X_{\mathrm{A}}}$	$k \tau=\frac{C_{A 0}-C_{A}}{C_{A}}=\frac{X_{A}}{1-X_{\lambda}}$
$\begin{aligned} n & =2 \\ -r_{\mathrm{A}} & =k C_{A}^{2} \end{aligned}$	$k \tau C_{A 0}=\frac{C_{A 0}-C_{A}}{C_{\mathrm{A}}}=\frac{X_{A}}{1-X_{A}}$	$k \tau=\frac{\left(C_{A 0}-C_{\Lambda}\right)}{C_{\lambda}^{2}}=\frac{X_{\Lambda}}{C_{A 0}\left(1-X_{\Lambda}\right)^{2}}$
$\begin{gathered} \text { any } n \\ -r_{A}=k C_{\lambda}^{n} \end{gathered}$	$(n-1) C_{A_{0}^{-1}}^{-1} k \tau=\left(\frac{C_{\mathrm{A}}}{C_{A 0}}\right)^{1-n}-1=\left(1-X_{A}\right)^{1-n}-1$	$k \tau=\frac{C_{A 0}-C_{\mathrm{A}}}{C_{A}^{n}}=\frac{X_{\mathrm{A}}}{C_{\lambda_{0}^{-\pi}\left(1-X_{A}\right)^{n}}}$
$\begin{gathered} n=1 \\ \begin{array}{c} n \underset{\sim}{\underset{2}{2}} \mathrm{R} \\ C_{\mathrm{R} 0}=0 \\ \hline \end{array} \end{gathered}$	$k_{1} T=\left(1-\frac{C_{A c}}{C_{A 0}}\right) \ln \left(\frac{C_{A 0}-C_{\Lambda}}{C_{A}-C_{A c}}\right)=X_{A c} \ln \left(\frac{X_{A c}}{X_{A c}-X_{A}}\right)$	$k_{1} \tau=\frac{\left(C_{A 0}-C_{A}\right)\left(C_{A 0}-C_{A}\right)}{C_{\Delta 0}\left(C_{A}-C_{A O}\right)}=\frac{X_{A} X_{A \rho}}{X_{A c}-X_{A}}$
General rate	$\tau=\int_{C_{A}}^{c_{N}} \frac{d C_{A}}{-r_{A}}=C_{A 0} \int_{0}^{x_{\Lambda}} \frac{d X_{A}}{-r_{A}}$	$\tau=\frac{C_{A 0}-C_{A}}{-r_{A N}}=\frac{C_{A 0} X_{A}}{-r_{A f}}$

