

MANICALAND STATE UNIVERSITY

OF APPLIED SCIENCES

FACULTY OF ENGINEERING

DEPARTMENT: CHEMICAL AND PROCESSING ENGINEERING

MODULE: ENGINEERING MATERIALS CODE: CHEP 102

> SESSIONAL EXAMINATIONS SEPTEMBER 2021

> > **DURATION: 3 HOURS**

EXAMINER: MR M. MAPOSA

INSTRUCTIONS

- 1. Answer **all** questions in section A
- 2. Answer three questions in section B
- 3. Each question carries 25 marks
- 4. Total marks 100

ADDITIONAL MATERIAL Periodic table

Page 1 of 5

SECTION A

Answer all questions in this section

[2 marks]

QUESTION 1

(a) List any two consequences of corrosion

(b) Describe the following terms as applied to corrosion chemistry

- i) Passivation
- ii) Polarization
- iii) Pitting
- iv) Inhibitor
- v) Galvanic cell [5 marks]
- (c) Distinguish fully between
 - i) dry corrosion and wet corrosion
 - ii) stress and strain
 - iii) interstitial alloys and substitutional alloys [6 marks]
- (d) Give any two advantages and one disadvantage of
 - i) Cold working
 - ii) Heat treatment in metallurgy [4 marks]
- (e) Sketch a stress-strain graph to show how temperature affect creep rate [3 marks]
- (f) A sheet of carbon steel one meter wide by three meter long has lost 40 g to corrosion over the past six months. Convert that mass loss to a penetration rate of the steel in mm units. What would be the total corrosion current associated with such a corrosion rate? (carbon steel density = 7.8 g/cm^3) [5 marks]

SECTION B

Answer any three questions in this section

QUESTION 2

- a) Using examples of your choice, briefly describe the following structural failure methods
 - i) Fatigue failure
 - ii) Creep failure
 - iii) Hydrogen embrittlement
 - iv) Corrosion fatigue
 - v) Stress corrosion cracking [20 marks]
- b) A certain alloy used to make coins comprises of copper and zinc. The alloy has a density of 8.31 g/cm³. Given that the densities of copper and zinc are 8.97 g/cm³ and 7.14 g/cm³ respectively, calculate the percentage composition of the alloy. [5 marks]

QUESTION 3

a. State the three categories of corrosion giving one example for each

[6 marks]

- b. With the aid of a well labelled Pourbaix diagram show the potential- pH domains under which iron is under various forms of corrosion, passivation and immunity.
 [5 marks]
- c. Describe two strengths and three limitations of the use of Pourbiax diagram in the study of corrosion and corrosion prevention [5 marks]
- d. Laboratory tests carried out on three alloys produced results shown in Table 1

Table 1									
Material	Density of Material (g/cm ³)	Weight loss (gmd)	Pitting Factor						
A	2.5	30	1						
В	8.0	50	2						
С	6.5	4.5	2						

Calculate maximum penetration in millimeter for each material at the end of two years [9 marks]

QUESTION 4

- (a) Write brief notes on each of the following processes
 - i) annealing
 - ii) tempering
 - iii) hardening
 - iv) normalising
- (b) Describe any **three** ways in which phase diagrams are useful in the study, production and use of alloys [6 marks]

[8 marks]

- (c) With the aid of well labelled sketch diagrams distinguish between fatigue curve and creep curve highlighting the circumstances leading to failure in each case [6 marks]
- (d) Water entering a steel pipeline at the rate of 45 liters per minute contains 5.80 ml O_2 per liter (at 25 °C ad 1 atm). Water leaving the pipe contains 0,16 ml O_2 per liter. Assuming that all corrosion is concentrated at a heated section of area 32 m² forming iron (lll) oxide: Fe₂O₃, what is the corrosion rate in gmd and in mmy? [5 marks]

QUESTION 5

(a) What	are	the	major	differences	between	activation	and	concentration
polar	polarisation?							[3 marks]
(b) Give	(b) Give the three-step mechanism for activation polarisation							
(c) Under what conditions is								
i)	i) Concentration polarisation rate determining							[3 marks]
ii)) Activation polarisation rate determining							[3 marks]
(d) A piece of corroded steel plate was found in a submerged ocean vessel. It was								
estimated that the original surface area of the plate was 12 m^2 and that								
approximately 2.7 kg had been corroded away during submersion. Assuming								
that a corrosion penetration rate of 200 mpy for this alloy, estimate the time of								
submersion in years. Density of steel is 7.9 g/cm ³							[5 marks]	
(e) Explain how the following methods protect materials from excessive corrosion								
i)	Use of	of inl	hibitors					
ii)	Cath	odic	protecti	on				
iii)	Anoc	lic p	rotectio	n				
iv)	Alloy	ying						[8 marks]
END OF EXAM								

END OF EXAM